【題目】已知:二次函數(shù)yax2+bx+a0,b0)的圖象與x軸只有一個公共點A

1)當(dāng)a時,求點A的坐標(biāo);

2)求A點的坐標(biāo)(只含b的代數(shù)式來表示);

3)過點A的直線yx+k與二次函數(shù)的圖象相交于另一點B,當(dāng)b≥1時,求點B的橫坐標(biāo)m的取值范圍.

【答案】(1)A(1,0);(2)(﹣,0);(3)m≥3.

【解析】

1)由二次函數(shù)y=ax2+bx+a0,b0)的圖象與x軸只有一個公共點A,推出=b2-4a×=b2-2a=0,再根據(jù)a=,代入求出b即可;
2)令y=0,求出x的值即可得出A點坐標(biāo);

3)構(gòu)建方程組求出點B的橫坐標(biāo),利用二次函數(shù)的性質(zhì)即可解決問題;

解:(1)∵二次函數(shù)yax2+bx+a0,b0)的圖象與x軸只有一個公共點,

b24a×0,

即:b22a,

當(dāng)a時,b21,

又∵b0,

b=﹣1,

∴二次函數(shù)的關(guān)系式為:yx2x+,

當(dāng)y0時,x2x+0,解得:x1x21,

∴點A10),

2)∵b22a,(a0,b0),

b=﹣

當(dāng)y=0時,ax2+bx+0,

x=﹣

∴點A的坐標(biāo)為(﹣,0);

3)將點A的坐標(biāo)代入yx+k得,k

,解得:x1=﹣,x2

∵點A的坐標(biāo)為(﹣,0);

∴點B的橫坐標(biāo)m

m2)=22,

20,

∴當(dāng)b時,m的增大而減小,

∵﹣1≤b0

1,

m≥2×(﹣123,

m≥3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABCBC邊上一點O為圓心的圓,經(jīng)過A、B兩點,且與BC邊交于點E,DBE的下半圓弧的中點,連接ADBCF,若AC=FC.

(1)求證:AC是⊙O的切線:

(2)BF=8,DF=,求⊙O的半徑;

(3)若∠ADB=60°,BD=1,求陰影部分的面積.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y1=﹣x+3x軸交于點B,與y軸交于點C,拋物y2ax2+bx+c經(jīng)過點B,C并與x軸交于點A(﹣1,0).

1)求拋物線解析式,并求出拋物線的頂點D坐標(biāo)   

2)當(dāng)y20時、請直接寫出x的取值范圍   ;

3)當(dāng)y1y2時、請直接寫出x的取值范圍   

4)將拋物線y2向下平移,使得頂點D落到直線BC上,求平移后的拋物線解析式   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸于點,交軸正半軸于點,與過點的直線相交于另一點,過點軸,垂足為.

1)求拋物線的解析式.

2)點軸正半軸上的一個動點,過點軸,交直線于點,交拋物線于點.

①若點在線段上(不與點重合),連接,求面積的最大值.

②設(shè)的長為,是否存在,使以點,,,為頂點的四邊形是平行四邊形?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線yx22m1x1m

1)當(dāng)m2時,求該拋物線的對稱軸和頂點坐標(biāo);

2)設(shè)該拋物線與x軸交于Ax1,0)、Bx2,0),x10x2,與y軸交于點C,且滿足,求這個拋物線的解析式;

3)在(2)的條件下,是否存在著直線ykx+b與拋物線交于點P、Q,使y軸平分△CPQ的面積?若存在,求出k,b應(yīng)滿足的條件;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超越公司將某品牌農(nóng)副產(chǎn)品運往新時代市場進(jìn)行銷售,記汽車行駛時為t小時,平均速度為v千米/小時(汽車行駛速度不超過100千米/小時).根據(jù)經(jīng)驗,v,t的一組對應(yīng)值如下表:

v(千米/小時)

75

80

85

90

95

t(小時)

4.00

3.75

3.53

3.33

3.16

1)根據(jù)表中的數(shù)據(jù),求出平均速度v(千米/小時)關(guān)于行駛時間t(小時)的函數(shù)表達(dá)式;

2)汽車上午730從超越公司出發(fā),能否在上午1000之前到達(dá)新時代市場?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD的邊長為4,點E F分別在BC, BD上,且BE=1,過三點C, E, F作⊙OCD于點G.

(1)證明∠EFG =90°.

(2)如圖2,連結(jié)AF,當(dāng)點F運動至點A,F G三點共線時,求的面積.

(3)在點F整個運動過程中,

①當(dāng)EF FG, CG中滿足某兩條線段相等,求所有滿足條件的BF的長.

②連接EG,若時,求⊙O的半徑(請直接寫出答案) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在向貧困地區(qū)捐書活動中全體師生積極捐書.為了解所捐書籍的種類,某同學(xué)對部分書籍進(jìn)行了抽樣調(diào)查,并根據(jù)調(diào)查數(shù)據(jù)繪制了如圖所示不完整統(tǒng)計圖.請根據(jù)統(tǒng)計圖回答下面問題:

1)本次抽樣調(diào)查的書籍有多少本?請通過計算補全條形統(tǒng)計圖;

2)求出圖中表示科普類書籍的扇形圓心角度數(shù);

3)本次活動師生共捐書本,請估計有多少本文學(xué)類書籍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABO的直徑,BCAB,連結(jié)OC,弦ADOC,直線CDBA的延長線于點E

1)求證:直線CDO的切線;

2)若DE=2BC,求ADOC的值.

查看答案和解析>>

同步練習(xí)冊答案