【題目】為估計全市七年級學生的體重情況,從某私立學校隨機抽取20人進行調查,在這個問題中,調查的樣本________(填“具有”或“不具有”)代表性.
科目:初中數學 來源: 題型:
【題目】在數軸上有兩個點A,B,點A表示﹣3,點B與點A相距5.5個單位長度,則點B表示的數為( )
A.﹣2.5或8.5
B.2.5或﹣8.5
C.﹣2.5
D.﹣8.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】【問題情境】:
如圖1,AB//CD,∠PAB=130°,∠PCD=120°,求∠APC的度數.
小明的思路是:過P作PE//AB,通過平行線性質來求∠APC.
(1)按小明的思路,求∠APC的度數;
(2)【問題遷移】:
如圖2,AB//CD,點P在射線OM上運動,記∠PAB=α,∠PCD=β,當點P在B、D兩點之間運動時,問∠APC與α、β之間有何數量關系?請說明理由;
(3)【問題應用】:
在(2)的條件下,如果點P在B、D兩點外側運動時(點P與點O、B、D三點不重合),請直接寫出∠APC與α、β之間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了“綠色出行”,減少霧霾,家住番禺在廣州中心城區(qū)上班的王經理,上班出行由自駕車改為乘坐地鐵出行,已知王經理家距上班地點21千米,他用地鐵方式平均每小時出行的路程,比他用自駕車平均每小時行駛的路程的2倍還多5千米,他從家出發(fā)到達上班地點,地鐵出行所用時間是自駕車方式所用時間的 . 求王經理地鐵出行方式上班的平均速度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB∥CD,直L交AB、CD分別于點E、F,點M在線段EF上(點M不與E、F重合),N是直線CD上的一個動點(點N不與F重合)
(1)當點N在射線FC上運動時(F點除外),則∠FMN+∠FNM=∠AEF,說明理由?
(2)當點N在射線FD上運動時(F點除外),∠FMN+∠FNM與∠AEF有什么關系?畫出圖形,猜想結論并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列各組數中,具有相反意義的量是( )
A.身高180cm和身高90cm
B.向東走5公里和向南走5公里
C.收入300元和支出300元
D.使用汽油10公斤和浪費酒精10公斤
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com