【題目】a、b、c三個數(shù)在數(shù)軸上位置如圖所示,且|a|=|b|

(1)求出a、b、c各數(shù)的絕對值;

(2)比較a,﹣a、﹣c的大。

(3)化簡|a+b|+|a﹣b|+|a+c|+|b﹣c|.

【答案】(1)|a|=a,|b|=﹣b,|c|=﹣c;(2)﹣aa﹣c;(3)﹣2c.

【解析】

(1)根據(jù)圖示可知c<b<0<a,由此根據(jù)絕對值的性質即可得答案;

(2)根據(jù)數(shù)軸上點的位置以及絕對值進行比較即可得;

(3)根據(jù)題意得:a+b=0,a﹣b>0,a+c<0,b﹣c>0,由此進行化簡即可得結果.

(1)∵從數(shù)軸可知:c<b<0<a,

|a|=a,|b|=﹣b,|c|=﹣c;

(2)∵從數(shù)軸可知:c<b<0<a,|c|>|a|,

﹣a<a<﹣c;

(3)根據(jù)題意得:a+b=0,a﹣b>0,a+c<0,b﹣c>0,

|a+b|+|a﹣b|+|a+c|+|b﹣c|

=0+a-b﹣a﹣c+b-c

=﹣2c.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①為一種平板電腦保護套的支架效果圖,AM固定于平板電腦背面,與可活動的MB、CB部分組成支架.平板電腦的下端N保持在保護套CB上,不考慮拐角處的弧度及平板電腦和保護套的厚度,繪制成圖②,其中AN表示平板電腦,M為AN上的定點,AN=CB=20cm,AM=8cm,MB=MN,我們把∠ANB叫做傾斜角,根據(jù)以上數(shù)據(jù),判斷傾斜角能小于30°嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有三張正面分別標有數(shù)字:﹣1,1,2的卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中抽出一張記下數(shù)字,放回洗勻后再從中隨機抽出一張記下數(shù)字.
(1)請用列表或畫樹形圖的方法(只選其中一種),表示兩次抽出卡片上的數(shù)字的所有結果;
(2)將第一次抽出的數(shù)字作為點的橫坐標x,第二次抽出的數(shù)字作為點的縱坐標y,求點(x,y)落在雙曲線y= 上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,我國的一艘海監(jiān)船在釣魚島A附近沿正東方向航行,船在B點時測得釣魚島A在船的北偏東60°方向,船以50海里/時的速度繼續(xù)航行2小時后到達C點,此時釣魚島A在船的北偏東30°方向.請問船繼續(xù)航行多少海里與釣魚島A的距離最近?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在開展好書伴我成長的讀書活動中,某中學為了解八年級300名學生讀書情況,隨機調查了八年級50名學生讀書的冊數(shù).統(tǒng)計數(shù)據(jù)如下表所示:

(1)求這50個樣本數(shù)據(jù)的平均救,眾數(shù)和中位數(shù).

(2)根據(jù)樣本數(shù)據(jù),估計該校八年級300名學生在本次活動中讀書多于2冊的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知頂點為(﹣3,﹣6)的拋物線y=ax2+bx+c經過點(﹣1,﹣4),則下列結論中錯誤的是(
A.b2>4ac
B.ax2+bx+c≥﹣6
C.關于x的一元二次方程ax2+bx+c=﹣4的兩根分別為﹣5和﹣1
D.若點(﹣2,m),(﹣5,n)在拋物線上,則m>n

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分在東營市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經過市場考察得知,購買1臺電腦和2臺電子白板需要35萬元,購買2臺電腦和1臺電子白板需要25萬元

1求每臺電腦、每臺電子白板各多少萬元?

2根據(jù)學校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在股市交易中,每買、賣一次需付交易款的千分之七點五作為交易費用,某投資者以每股10元的價格買入某股票1 000股,下表為第一周內每日該股票的漲跌情況(單位:元).

星期

每股漲跌

+2

+1.5

-0.5

-4.5

+2.5

(1)星期三收盤時,每股是多少元?

(2)本周內每股最高價是多少元?最低價是多少元?

(3)若該投資者在星期五收盤前將股票全部賣出,他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形OABC的邊長為4,對角線相交于點P,拋物線L經過O、P、A三點,點E是正方形內的拋物線上的動點.

(1)建立適當?shù)钠矫嬷苯亲鴺讼担?/span>
①直接寫出O、P、A三點坐標;
②求拋物線L的解析式;
(2)求△OAE與△OCE面積之和的最大值.

查看答案和解析>>

同步練習冊答案