【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC= AB;
(3)點M是 的中點,CM交AB于點N,若AB=4,求MNMC的值.
【答案】
(1)
證明:∵OA=OC,
∴∠A=∠ACO.
又∵∠COB=2∠A,∠COB=2∠PCB,
∴∠A=∠ACO=∠PCB.
又∵AB是⊙O的直徑,
∴∠ACO+∠OCB=90°.
∴∠PCB+∠OCB=90°.
即OC⊥CP,
∵OC是⊙O的半徑.
∴PC是⊙O的切線.
(2)
證明:∵AC=PC,
∴∠A=∠P,
∴∠A=∠ACO=∠PCB=∠P.
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,
∴∠COB=∠CBO,
∴BC=OC.
∴BC= AB.
;
證明:∵AC=PC,
∴∠A=∠P,
∴∠A=∠ACO=∠PCB=∠P.
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,
∴∠COB=∠CBO,
∴BC=OC.
∴BC= AB.
;證明:∵AC=PC,
∴∠A=∠P,
∴∠A=∠ACO=∠PCB=∠P.
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,
∴∠COB=∠CBO,
∴BC=OC.
∴BC= AB.
(3)
解:連接MA,MB,
∵點M是 的中點,
∴ ,
∴∠ACM=∠BCM.
∵∠ACM=∠ABM,
∴∠BCM=∠ABM.
∵∠BMN=∠BMC,
∴△MBN∽△MCB.
∴ .
∴BM2=MNMC.
又∵AB是⊙O的直徑, ,
∴∠AMB=90°,AM=BM.
∵AB=4,
∴BM= .
∴MNMC=BM2=8.
【解析】(1)已知C在圓上,故只需證明OC與PC垂直即可;根據圓周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切線;(2)AB是直徑;故只需證明BC與半徑相等即可;(3)連接MA,MB,由圓周角定理可得∠ACM=∠BCM,進而可得△MBN∽△MCB,故BM2=MNMC;代入數據可得MNMC=BM2=8.
科目:初中數學 來源: 題型:
【題目】如圖,已知點A(1,a)是反比例函數y=﹣ 的圖象上一點,直線y=﹣ 與反比例函數y=﹣ 的圖象在第四象限的交點為點B.
(1)求直線AB的解析式;
(2)動點P(x,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=ax2+bx+3交x軸于A(﹣1,0)和B(5,0)兩點,交y軸于點C,點D是線段OB上一動點,連接CD,將線段CD繞點D順時針旋轉90°得到線段DE,過點E作直線l⊥x軸于H,過點C作CF⊥l于F.
(1)求拋物線解析式;
(2)如圖2,當點F恰好在拋物線上時,求線段OD的長;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點C按順時針方向旋轉一定角度后得△EDC,點D在AB邊上,斜邊DE交AC于點F,則圖中陰影部分面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c的圖象如圖所示,則下列結論:①b2﹣4ac<0;②a﹣b+c>0;③abc>0;④b=2a中,正確的結論的個數是( 。
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與軸交于A、B兩點,頂點C的縱坐標為﹣2,現將拋物線向右平移2個單位,得到拋物線y=a1x2+b1x+c1 , 則下列結論:
①b>0;②a﹣b+c<0;③陰影部分的面積為4;④若c=﹣1,則b2=4a.
正確的是( 。
A.①③
B.②③
C.②④
D.③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】市一中準備組織學生及學生家長到武漢大學參觀體驗,為了便于管理,所有人員到武漢必須乘坐在同一列動車上;根據報名人數,若都買 一等座單程火車票需2556元,若都買二等座單程火車票且花錢最少,則需1530元;已知學生家長與教師的人數之比為2:1,安陸到武漢的動車票價格(動 車學生票只有二等座可以打6折)如下表所示:
(1)參加參觀體驗的老師、家長與學生各有多少人?
(2)由于各種原因,二等座火車票單程只能買x張(x小于參加參觀體驗的人數),其余的須買一等座火車票,在保證每位參與人員都有座位坐的前提下,請你設計最經濟的購票方案,并寫出購買火車票的總費用(單程)y與x之間的函數關系式.
(3)請你做一個預算,按第(2)小題中的購票方案,購買單程火車票的總費用至少是多少錢?最多是多少錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+2x+c與y軸交于點A(0,6),與x軸交于點B(6,0),點P是線段AB上方拋物線上的一個動點.
(1)求這條拋物線的表達式及其頂點坐標;
(2)當點P移動到拋物線的什么位置時,使得∠PAB=75°,求出此時點P的坐標;
(3)當點P從A點出發(fā)沿線段AB上方的拋物線向終點B移動,在移動中,點P的橫坐標以每秒1個單位長度的速度變動,與此同時點M以每秒1個單位長度的速度沿AO向終點O移動,點P,M移動到各自終點時停止,當兩個移點移動t秒時,求四邊形PAMB的面積S關于t的函數表達式,并求t為何值時,S有最大值,最大值是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com