【題目】如圖,正方形ABCD中,點E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正確結(jié)論有( 。
A. 2個 B. 3個 C. 4個 D. 5個
【答案】C
【解析】∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.
∵△AEF等邊三角形,
∴AE=EF=AF,∠EAF=60°.
∴∠BAE+∠DAF=30°.
在Rt△ABE和Rt△ADF中,
,
Rt△ABE≌Rt△ADF(HL),
∴BE=DF(故①正確).
∠BAE=∠DAF,
∴∠DAF+∠DAF=30°,
即∠DAF=15°(故②正確),
∵BC=CD,
∴BC-BE=CD-DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故③正確).
設(shè)EC=x,由勾股定理,得
EF=x,CG=x,
AG=AEsin60°=EFsin60°=2×CGsin60°=x,
∴AC= ,
∴AB= ,
BE= ,
∴BE+DF= ≠x,(故④錯誤),
∵S△CEF=,
S△ABE=,
∴2S△ABE==S△CEF,(故⑤正確).
綜上所述,正確的有4個,
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一圓柱,其高為12cm,它的底面半徑為3cm,在圓柱下底面A處有一只螞蟻,它想得到上面B處的食物,則螞蟻經(jīng)過的最短距離為_________.(π取3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD,AB=9,AD=4. E為CD邊上一點,CE=6.
(1)求AE的長.
(2)點P從點B出發(fā),以每秒1個單位的速度沿著邊BA向終點A運動,連接PE. 設(shè)點P運動的時間為t秒,則當t為何值時,△PAE為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明早晨跑步,他從自己家出發(fā),向東跑了2km到達小彬家,繼續(xù)向東跑了1.5km到達小紅家,然后又向西跑了4.5km到達學校,最后又向東,跑回到自己家.
(1)以小明家為原點,以向東為正方向,用1個單位長度表示1km,在圖中的數(shù)軸上,分別用點A表示出小彬家,用點B表示出小紅家,用點C表示出學校的位置;
(2)求小彬家與學校之間的距離;
(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多長時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察探索:
(x﹣1)(x+1)=x2﹣1
(x﹣1)(x2+x+1)=x3﹣1
(x﹣1)(x3+x2+x+1)=x4﹣1
(x﹣1)(x4+x3+x2+x+1)=x5﹣1
根據(jù)規(guī)律填空:(x﹣1)(xn+xn﹣1+…+x+1)=__.(n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)觀察與歸納:在如圖1所示的平面直角坐標系中,直線l與y軸平行,點M與點N 是直線l上的兩點(點M在點N的上方).
①亮亮發(fā)現(xiàn):若點M坐標為(2,3),點N坐標為(2,﹣4),則MN的長度為_____; ②亮亮經(jīng)過多次取l上的兩點后,他歸納出這樣的結(jié)論:若點M坐標為(t,m),點N坐標為(t,n),當m>n時,MN的長度可表示為______;
(2)如圖2,四邊形OABC的頂點O是坐標原點,點A在第一象限,OAB=90,OA=AB,點C在第四象限,B點的坐標為(6,0),且OC=5.點P是線段OB上的一個動點(點P不與點0、B重合),過點P作與y軸平行的直線l,設(shè)點P橫坐標為t.
①已知當t=4時,直線l恰好經(jīng)過點C,求點A、C兩點的坐標;
②在①的條件下,直線l上有一點M,當MB=OC時,直接寫出滿足條件的點M坐標;
③如圖3延長線段BA交y軸于點D將線段BD順時針旋轉(zhuǎn)60,D點的對應點為點E,是否存 在x軸上的點Q,使得QD+QE的值最小,若存在請求出點Q的坐標,并求出OQD的度數(shù); 若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com