(定義[a,b,c]為函數(shù)的特征數(shù),下面給出特征數(shù)為  [2m,1-m,-1-m]的函數(shù)的一些結(jié)論:
①當m=-3時,函數(shù)圖象的頂點坐標是(,);
②當m>0時,函數(shù)圖象截x軸所得的線段長度大于;
③當m<0時,函數(shù)在時,y隨x的增大而減小;
④當m≠0時,函數(shù)圖象經(jīng)過x軸上一個定點.
其中正確的結(jié)論有________      .(只需填寫序號)
①②④.

試題分析:因為函數(shù)y=ax2+bx+c的特征數(shù)為[2m,1﹣m,﹣1﹣m];
①當m=﹣3時,y=﹣6x2+4x+2=﹣6(x﹣2+,頂點坐標是(,);此結(jié)論正確;
②當m>0時,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得x=,x1=1,x2=,
|x2﹣x1|=,所以當m>0時,函數(shù)圖象截x軸所得的線段長度大于,此結(jié)論正確;
③當m<0時,y=2mx2+(1﹣m)x+(﹣1﹣m) 是一個開口向下的拋物線,其對稱軸是:,在對稱軸的右邊y隨x的增大而減小.因為當m<0時,=,即對稱軸在x=右邊,因此函數(shù)在x=右邊先遞增到對稱軸位置,再遞減,此結(jié)論錯誤;
④當x=1時,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)="0" 即對任意m,函數(shù)圖象都經(jīng)過點(1,0)那么同樣的:當m=0時,函數(shù)圖象都經(jīng)過同一個點(1,0),當m≠0時,函數(shù)圖象經(jīng)過同一個點(1,0),故當m≠0時,函數(shù)圖象經(jīng)過x軸上一個定點此結(jié)論正確.
根據(jù)上面的分析,①②④都是正確的,③是錯誤的.
故答案是①②④.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

若拋物線y=x2﹣bx+9的頂點在x軸上,則b的值為               

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=x2+mx+n交x軸于A、B兩點,交y軸于點C,點P是它的頂點,點A的坐標是(1,0),點B的坐標是(﹣3,0).

(1)求m、n的值;
(2)求直線PC的解析式.
[溫馨提示:拋物線y=ax2+bx+c(a≠0)的頂點坐標為(﹣)].

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù).

(1)在給定的直角坐標系中,畫出這個函數(shù)的圖象;
(2)根據(jù)圖象,寫出當y<0時,x的取值范圍;
(3)若將此圖象沿x軸向右平移3個單位,請寫出平移后圖象所對應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知拋物線y=-x2+px+q的對稱軸為x=﹣3,過其頂點M的一條直線y=kx+b與該拋物線的另一個交點為N(﹣1,1).要在坐標軸上找一點P,使得△PMN的周長最小,則點P的坐標為(    )
A.(0,2)B.(,0)
C.(0,2)或(,0)D.以上都不正確

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=-2(x-1)2+3的圖象的頂點坐標是(  。
A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線的解析式為
(1)求證:不論m為何值,此拋物線與x軸必有兩個交點,且兩交點A、B之間的距離為定值;
(2)設(shè)點P為此拋物線上一點,若△PAB的面積為8,求符合條件的點P的坐標;
(3)若(2)中△PAB的面積為S(S>0),試根據(jù)面積S值的變化情況,確定符合條件的點P的個數(shù)(本小題直接寫出結(jié)論,不要求寫出計算、證明過程).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

當a<0時,拋物線y=x2+2ax+1+2a2的頂點在(      )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

把拋物線向左平移3個單位,再向下平移2個單位后,所得的拋物線的表達式是
A.B.
C.D.

查看答案和解析>>

同步練習冊答案