【題目】如圖,已知:EAOB的平分線上一點(diǎn),ECOB,EDOA,CD是垂足,連接CD,交OE于點(diǎn)F

(1)求證:OD=OC

(2)若AOB=60°,求證:OE=4EF

【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.

【解析】

(1)利用角平分線定理得到ED=EC,再由斜邊為公共邊,利用HL得到直角三角形ODE與直角三角形OCE全等,利用全等三角形的對(duì)應(yīng)邊相等即可得證;
(2)由OE為角平分線,且∠AOB=60°,得到∠DOE=EDF=30°,在直角三角形ODE中,利用30度角所對(duì)的直角邊等于斜邊的一半得到OE=2DE,在直角三角形DEF中,利用30度角所對(duì)的直角邊等于斜邊的一半得到DE=2EF,等量代換即可得證.

證明:(1)∵EAOB的平分線上一點(diǎn),ECOBEDOA,

ED=EC,

RtODERtOCE中,

,

RtODERtOCEHL),

OD=OC

2)∵∠AOB=60°,OE平分AOB

∴∠DOE=COE=30°,

∴∠DEO=60°,∠EDF=30°,

RtODE中,DOE=30°,

OE=2DE

RtDEF中,EDF=30°,

DE=2EF

OE=4EF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綿陽(yáng)農(nóng)科所為了考察某種水稻穗長(zhǎng)的分布情況,在一塊試驗(yàn)田里隨機(jī)抽取了50個(gè)谷穗作為樣本,量得它們的長(zhǎng)度(單位:cm).對(duì)樣本數(shù)據(jù)適當(dāng)分組后,列出了如下頻數(shù)分布表:

穗長(zhǎng)

4.5≤x5

5≤x5.5

5.5≤x6

6≤x6.5

6.5≤x7

7≤x7.5

頻數(shù)

4

8

12

13

10

3

1)在圖1、圖2中分別出頻數(shù)分布直方圖和頻數(shù)折線圖;

2)請(qǐng)你對(duì)這塊試驗(yàn)田里的水稻穗長(zhǎng)進(jìn)行分析;并計(jì)算出這塊試驗(yàn)田里穗長(zhǎng)在5.5≤x7范圍內(nèi)的谷穗所占的百分比.

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為2 的正方形ABCD中,點(diǎn)E是CD邊的中點(diǎn),延長(zhǎng)BC至點(diǎn)F,使CF=CE,連接BE,DF.將△BEC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn).當(dāng)點(diǎn)E恰好落在DF上的點(diǎn)H處時(shí),連接AG、DG、BG,則AG的長(zhǎng)是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃購(gòu)進(jìn)一批甲、乙兩種玩具,已知5件甲種玩具的進(jìn)價(jià)與3件乙種玩具的進(jìn)價(jià)的和為231元,2件甲種玩具的進(jìn)價(jià)與3件乙種玩具的進(jìn)價(jià)的和為141元.

(1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元;

(2)近期批發(fā)商有優(yōu)惠活動(dòng),如圖所示,如果超市決定在甲、乙兩種玩具中選購(gòu)其中一種,且數(shù)量超過(guò)20件,請(qǐng)你幫助超市判斷購(gòu)進(jìn)哪種玩具更省錢(qián).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖所示,∠5=∠CDA=∠ABC,∠1=∠4,∠2=∠3,∠BAD+∠CDA=180°,填空:

∵∠5=∠CDA(已知),∴________________(內(nèi)錯(cuò)角相等,兩直線平行).

∵∠5=∠ABC(已知),∴________________(同位角相等,兩直線平行).

∵∠2=∠3(已知),∴________________(內(nèi)錯(cuò)角相等,兩直線平行).

∵∠BAD+∠CDA=180°(已知),

________________(同旁內(nèi)角互補(bǔ),兩直線平行).

∵∠5=∠CDA(已知),

又∠5與∠BCD互補(bǔ),

∠CDA與________互補(bǔ),

∴∠BCD=∠6(等角的補(bǔ)角相等),

________________(同位角相等,兩直線平行).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(探索新知)

如圖1,點(diǎn)C在線段AB上,圖中共有3條線段:ABACBC,若其中有一條線段的長(zhǎng)度是另一條線段長(zhǎng)度的兩倍,則稱點(diǎn)C是線段AB的“二倍點(diǎn)”.

(1)一條線段的中點(diǎn)   這條線段的“二倍點(diǎn)”;(填“是”或“不是”)

(深入研究)

如圖2,若線段AB=20cm,點(diǎn)M從點(diǎn)B的位置開(kāi)始,以每秒2cm的速度向點(diǎn)A運(yùn)動(dòng),當(dāng)點(diǎn)M到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為t秒.

(2)問(wèn)t為何值時(shí),點(diǎn)M是線段AB的“二倍點(diǎn)”;

(3)同時(shí)點(diǎn)N從點(diǎn)A的位置開(kāi)始,以每秒1cm的速度向點(diǎn)B運(yùn)動(dòng),并與點(diǎn)M同時(shí)停止.請(qǐng)直接寫(xiě)出點(diǎn)M是線段AN的“二倍點(diǎn)”時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

(1)a3(-b32+(-2ab23;

(2)(a-b)10÷(b-a)3÷(b-a)3;

(3)-22+(--2-(π-5)0-|-4|;

(4)(x+y-3)(x-y+3);

(5)3x2y(2x-3y)-(2xy+3y2)(3x2-3y);

(6)(x-2y)(x+2y)-(x-2y)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】湖州素有魚(yú)米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢(shì),一次性收購(gòu)了 淡水魚(yú),計(jì)劃養(yǎng)殖一段時(shí)間后再出售.已知每天放養(yǎng)的費(fèi)用相同,放養(yǎng) 天的總成本為 萬(wàn)元;放養(yǎng) 天的總成本為 萬(wàn)元(總成本=放養(yǎng)總費(fèi)用+收購(gòu)成本).
(1)設(shè)每天的放養(yǎng)費(fèi)用是 萬(wàn)元,收購(gòu)成本為 萬(wàn)元,求 的值;
(2)設(shè)這批淡水魚(yú)放養(yǎng) 天后的質(zhì)量為 ),銷(xiāo)售單價(jià)為 元/ .根據(jù)以往經(jīng)驗(yàn)可知: 的函數(shù)關(guān)系為 ; 的函數(shù)關(guān)系如圖所示.

①分別求出當(dāng) 時(shí), 的函數(shù)關(guān)系式;
②設(shè)將這批淡水魚(yú)放養(yǎng) 天后一次性出售所得利潤(rùn)為 元,求當(dāng) 為何值時(shí), 最大?并求出最大值.(利潤(rùn)=銷(xiāo)售總額-總成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知DE∥BC, AB∥CD,EAB的中點(diǎn),∠A=∠B.下列結(jié)論:①CD=AE;②AC=DE③AC平分∠BCD;④O點(diǎn)是DE的中點(diǎn);⑤AC=AB.其中正確的是( 。

A. ①②④ B. ①③⑤ C. ②③④ D. ②④⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案