閱讀以下的材料:
如果兩個(gè)正數(shù)a,b,即a>0,b>0,有下面的不等式:
當(dāng)且僅當(dāng)a=b時(shí)取到等號(hào),我們把
叫做正數(shù)a,b的算術(shù)平均數(shù),把
叫做正數(shù)a,b的幾何平均數(shù),于是上述不等式可表述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù)。它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最值問(wèn)題的有力工具。下面舉一例子:
例:已知x>0,求函數(shù)
的最小值。
解:令
,則有
,得
,當(dāng)且僅當(dāng)
時(shí),即時(shí)x=2,函數(shù)有最小值,最小值為2。
根據(jù)上面回答下列問(wèn)題
① 已知x>0,則當(dāng)x=______時(shí),函數(shù)
取到最小值,最小值為_(kāi)_____;
② 用籬笆圍一個(gè)面積為100cm
2的矩形花園,問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),所用的籬笆最短,最短的籬笆周長(zhǎng)是多少;
③已知x>0,則自變量取何值時(shí),函數(shù)
取到最大值,最大值為多少?