【題目】回答下列問題
(1)問題發(fā)現(xiàn) 如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE,求∠AEB的度數(shù).

(2)拓展探究 如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.請(qǐng)求∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說(shuō)明理由.

【答案】
(1)解:∵△ACB和△DCE均為等邊三角形,

∴CA=CB,CD=CE,∠ACB=∠DCE=60°,

∴∠ACD=60°﹣∠CDB=∠BCE.

在△ACD和△BCE中,

∴△ACD≌△BCE(SAS).

∴∠ADC=∠BEC.

∵△DCE為等邊三角形,

∴∠CDE=∠CED=60°.

∵點(diǎn)A,D,E在同一直線上,

∴∠ADC=120°,

∴∠BEC=120°.

∴∠AEB=∠BEC﹣∠CED=60°


(2)解:∠AEB=90°,AE=BE+2CM.

理由:∵△ACB和△DCE均為等腰直角三角形,

∴CA=CB,CD=CE,∠ACB=∠DCE=90°.

∴∠ACD=∠BCE.

在△ACD和△BCE中,

,

∴△ACD≌△BCE(SAS).

∴AD=BE,∠ADC=∠BEC.

∵△DCE為等腰直角三角形,

∴∠CDE=∠CED=45°.

∵點(diǎn)A,D,E在同一直線上,

∴∠ADC=135°,

∴∠BEC=135°.

∴∠AEB=∠BEC﹣∠CED=90°.

∵CD=CE,CM⊥DE,

∴DM=ME.

∵∠DCE=90°,

∴DM=ME=CM.

∴AE=AD+DE=BE+2CM


【解析】(1)先證出∠ACD=∠BCE,那么△ACD≌△BCE,根據(jù)全等三角形證出∠ADC=∠BEC,求出∠ADC=120°,得出∠BEC=120°,從而證出∠AEB=60°;(2)證明△ACD≌△BCE,得出∠ADC=∠BEC,最后證出DM=ME=CM即可.
【考點(diǎn)精析】利用等邊三角形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列尺規(guī)作圖,能判斷AD是△ABC邊上的高是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【閱讀】
我們分析解決某些數(shù)學(xué)問題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,
其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過(guò)作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M﹣N,若M﹣N>0,則M>N;若M﹣N=0,則M=N;若M﹣N<0,則M<N.
【運(yùn)用】
利用“作差法”解決下列問題:
(1)小麗和小穎分別兩次購(gòu)買同一種商品,小麗兩次都買了m千克商品,小穎兩次購(gòu)買商品均花費(fèi)n元,已知第一次購(gòu)買該商品的價(jià)格為a元/千克,第二次購(gòu)買該商品的價(jià)格為b元/千克(a,b是整數(shù),且a≠b),試比較小麗和小穎兩次所購(gòu)買商品的平均價(jià)格的高低.
(2)奶奶提一籃子玉米到集貿(mào)市場(chǎng)去兌換大米,每2kg玉米兌換1kg大米,商販用秤稱得連籃子帶玉米恰好20kg,于是商販連籃子帶大米給奶奶共10kg,在這個(gè)過(guò)程中誰(shuí)吃了虧?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖梯形ABCD中,AD∥BC,∠ABC+∠C=90°,AB=6,CD=8,M,N,P分別為AD、BC、BD的中點(diǎn),則MN的長(zhǎng)為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:一次函數(shù)的圖象與反比例函數(shù))的圖象相交于A,B兩點(diǎn)(A在B的右側(cè)).

(1)當(dāng)A(4,2)時(shí),求反比例函數(shù)的解析式及B點(diǎn)的坐標(biāo);

(2)在(1)的條件下,反比例函數(shù)圖象的另一支上是否存在一點(diǎn)P,使△PAB是以AB為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3)當(dāng)A(a,﹣2a+10),B(b,﹣2b+10)時(shí),直線OA與此反比例函數(shù)圖象的另一支交于另一點(diǎn)C,連接BC交y軸于點(diǎn)D.若,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,∠A=55°,將其折疊,使點(diǎn)A落在邊CB上A′處,折痕為CD,則∠A′DB=(
A.40°
B.30°
C.20°
D.10°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a,b,cABC的三邊,化簡(jiǎn)|a-b-c|+|b-c-a|+|c-a-b|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】工人師傅在架設(shè)電線時(shí),為了檢驗(yàn)三條電線是否互相平行只檢查了其中兩條是否與第三條平行即可,這樣做的道理是______________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A(1,-2)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)是( )

A. (1,-2) B. (-1,2) C. (-1,-2) D. (1,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案