某樓盤一樓是車庫(暫不出售),二樓至二十三樓均為商品房(對外銷售),商品房售價方案如下:第八層售價為3 000元/米2,從第八層起每上升一層,每平方米的售價增加40元;反之,樓層每下降一層,每平方米的售價減少20元.已知商品房每套面積均為120平方米,開發(fā)商為購買者制定了兩種購房方案:
方案一:購買者先交納首付金額(商品房總價的30%),再辦理分期付款(即貸款).
方案二:購買者若一次付清所有房款,則享受8%的優(yōu)惠,并免收五年物業(yè)管理費(已知每月物業(yè)管理費為a元)
(1)請寫出每平方米售價y(元/米2)與樓層x(2≤x≤23,x是正整數(shù))之間的函數(shù)解析式.
(2)小張已籌到120 000元,若用方案一購房,他可以購買哪些樓層的商品房呢?
(3)有人建議老王使用方案二購買第十六層,但他認(rèn)為此方案還不如不免收物業(yè)管理費而直接享受9%的優(yōu)惠劃算.你認(rèn)為老王的說法一定正確嗎?請用具體數(shù)據(jù)闡明你的看法.
(1)y=x為正整數(shù)
(2)小張用方案一可以購買二至十六層的任何一層
(3)見解析
解析解:(1)1°當(dāng)2≤x≤8時,每平方米的售價應(yīng)為:3 000-(8-x)×20=20x+2 840(元/平方米)
2°當(dāng)9≤x≤23時,每平方米的售價應(yīng)為:3 000+(x-8)·40=40x+2 680(元/平方米)
∴y=x為正整數(shù).
(2)由(1)知:
1°當(dāng)2≤x≤8時,小張首付款為
(20x+2 840)·120·30%
=36(20x+2 840)≤36(20×8+2 840)=108 000元<12 0 000元
∴2~8層可任選.
2°當(dāng)9≤x≤23時,小張首付款為(40x+2 680)×120×30%=36(40x+2 680)元
36(40x+2 680)≤120 000,解得x≤=16
∵x為正整數(shù),∴9≤x≤16
綜上得:小張用方案一可以購買二至十六層的任何一層.
(3)若按方案二購買第十六層,則老王要實交房款為:
y1=(40×16+2 680)×120×92%-60a(元)
若按老王的想法則要交房款為:
y2=(40×16+2 680)×120×91%(元)
∵y1-y2=3 984-60a
當(dāng)y1>y2即y1-y2>0時,解得0<a<66.4,此時老王想法正確;
當(dāng)y1≤y2即y1-y2≤0時,解得a≥66.4,此時老王想法不正確.
科目:初中數(shù)學(xué) 來源: 題型:解答題
如果一次函數(shù)y=kx+b的自變量在一2≤x≤6之間變化時,函數(shù)值是一11≤y≤9,試確定函數(shù)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知等腰△AOB放置在平面直角坐標(biāo)系xOy中, OA=OB,點B的坐標(biāo)為(3,4) .
(1)求直線AB的解析式;
(2)問將等腰△AOB沿x軸正方向平移多少個單位,能使點B落在反比例函數(shù) (x>0)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
漳州三寶之一“水仙花”暢銷全球,某花農(nóng)要將規(guī)格相同的800件水仙花運往A,B,C三地銷售,要求運往C地的件數(shù)是運往A地件數(shù)的3倍,各地的運費如下表所示:
| A地 | B地 | C地 |
運費(元/件) | 20 | 10 | 15 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
一農(nóng)民帶了若干千克自產(chǎn)的土豆進(jìn)城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售, 售出土豆千克數(shù)與他手中持有的錢(含備用零錢)的關(guān)系如圖所示,結(jié)合圖象回答下列問題:
(1) 農(nóng)民自帶的零錢是多少?
(2) 降價前他每千克土豆出售的價格是多少?
(3) 降價后他按每千克0.4元將剩余土豆售完,這時他手中的錢(含備用零錢) 是26元,問他一共帶了多少千克土豆.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
“節(jié)能環(huán)保,低碳生活”是我們倡導(dǎo)的一種生活方式,某家電商場計劃用11.8萬元購進(jìn)節(jié)能型電視機、洗衣機和空調(diào)共40臺,三種家電的進(jìn)價和售價如表所示:
價格種類 | 進(jìn)價(元/臺) | 售價(元/臺) |
電視機 | 5000 | 5500 |
洗衣機 | 2000 | 2160 |
空調(diào) | 2400 | 2700 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,梯形ABCD中,AB∥CD,AB=14,AD= 4,CD=7.直線l經(jīng)過A,D兩點,且sin∠DAB=.動點P在線段AB上從點A出發(fā)以每秒2個單位的速度向點B運動,同時動點Q從點B出發(fā)以每秒5個單位的速度沿B→C→D的方向向點D運動,過點P作PM垂直于AB,與折線A→D→C相交于點M,當(dāng)P,Q兩點中有一點到達(dá)終點時,另一點也隨之停止運動.設(shè)點P,Q運動的時間為t秒(t>0),△MPQ的面積為S.
(1)求腰BC的長;
(2)當(dāng)Q在BC上運動時,求S與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,是否存在某一時刻t,使得△MPQ的面積S是梯形ABCD面積的?若存在,請求出t的值;若不存在,請說明理由;
(4)隨著P,Q兩點的運動,當(dāng)點M在線段DC上運動時,設(shè)PM的延長線與直線l相交于點N,試探究:當(dāng)t為何值時,△QMN為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=65時,y=55;x=75時,y=45.
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
(3)若該商場獲得利潤不低于500元,試確定銷售單價x的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
A、B兩碼頭相距150千米,甲客船順流由A航行到B,乙客船逆流由B到A,若甲、乙兩客船在靜水中的速度相同,同時出發(fā),它們航行的路程y(千米)與航行時間x(時)的關(guān)系如圖所示.
(1)求客船在靜水中的速度及水流速度;
(2)一艘貨輪由A碼頭順流航行到B碼頭,貨輪比客船早2小時出發(fā),貨輪在靜水中的速度為10千米/時,在此坐標(biāo)系中畫出貨輪航程y(千米)與時間x(時)的關(guān)系圖象,并求貨輪與客船乙相遇時距A碼頭的路程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com