【題目】如圖,已知的半徑為1,的直徑,過點的切線,的中點,點,四邊形是平行四邊形.

1)求的長:

2的切線嗎?若是,給出證明;若不是,說明理由.

【答案】(1)2;(2)是,理由見解析

【解析】

1)連接BD,由DE的直徑,利用直徑所對的圓周角為直角可知:∠DBE90°,由平行四邊形的性質(zhì)可知:BCOE,BCOE1,在RtABD中,利用直角三角形斜邊中線定理可得AD的長;

2)連接OB,由BCODBCOD,可得四邊形BCDO是平行四邊形,根據(jù)切線的性質(zhì)可知:ODAD,進而得到四邊形BCDO是矩形,由矩形的性質(zhì)可知OBCB,繼而求證BC為圓的切線.

(1)如圖,連接,

是直徑,

,

∵四邊形為平行四邊形,

,

中,的中點,

(2)是,理由如下:

如圖,連接

, ,

∴四邊形為平行四邊形,

為圓的切線,

∴四邊形為矩形,

∴則為圓的切線.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AC=BC=3cm.動點P從點A出發(fā),以cm/s的速度沿AB方向運動到點B.動點Q同時從點A出發(fā),以1cm/s的速度沿折線ACCB方向運動到點B.設(shè)APQ的面積為y(cm2).運動時間為x(s),則下列圖象能反映yx之間關(guān)系的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,,動點點出發(fā)以/秒向終點運動,動點同時從點出發(fā)以/秒按的方向在邊,,上運動,設(shè)運動時間為(秒),那么的面積隨著時間(秒)變化的函數(shù)圖象大致為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出

1)如圖①,在△ABC中,ABAC10,BC12,點O是△ABC的外接圓的圓心,則OB的長為   

問題探究

2)如圖②,已知矩形ABCD,AB4,AD6,點EAD的中點,以BC為直徑作半圓O,點P為半圓O上一動點,求E、P之間的最大距離;

問題解決

3)某地有一塊如圖③所示的果園,果園是由四邊形ABCD和弦CB與其所對的劣弧場地組成的,果園主人現(xiàn)要從入口D上的一點P修建一條筆直的小路DP.已知ADBC,∠ADB45°,BD120米,BC160米,過弦BC的中點EEFBC于點F,又測得EF40米.修建小路平均每米需要40元(小路寬度不計),不考慮其他因素,請你根據(jù)以上信息,幫助果園主人計算修建這條小路最多要花費多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=ax2-4ax+c(a0)y軸交于點A,將點A向右平移2個單位長度,得到點B.直線x軸,y軸分別交于點C,D.

1)求拋物線的對稱軸.

2)若點A與點D關(guān)于x軸對稱.

①求點B的坐標.

②若拋物線與線段BC恰有一個公共點,結(jié)合函數(shù)圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖,把經(jīng)過拋物線 (, ,為常數(shù))軸的交點和頂點的直線稱為拋物線的“伴線”,若拋物線與軸交于兩點(的右側(cè)),經(jīng)過點和點的直線稱為拋物線的“標線”.

(1)已知拋物線,求伴線的解析式.

(2)若伴線為,標線為,

①求拋物線的解析式;

②設(shè)為“標線”上一動點,過平行于“伴線”,交“標線”上方的拋物線于,求線段長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是根據(jù)九年級某班50名同學(xué)一周的鍛煉情況繪制的條形統(tǒng)計圖,下面關(guān)于該班50名同學(xué)一周鍛煉時間的說法錯誤的是(  )

A.平均數(shù)是6

B.中位數(shù)是6.5

C.眾數(shù)是7

D.平均每周鍛煉超過6小時的人數(shù)占該班人數(shù)的一半

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)前夕,某批發(fā)部從廠家購進A、B兩種禮盒,已知購進2A禮盒和3B禮盒共花520元;購進3A禮盒和2B禮盒共花費480元.

1)求A、B兩種禮盒的單價分別是多少元?

2)該批發(fā)部經(jīng)理購進這兩種禮盒恰好用去4800元購進A種禮盒最多18個,B種禮盒的數(shù)量不超過A種禮盒數(shù)量的2倍,共有幾種進貨方案?

3)已知銷售一個A種禮盒可獲利10元,銷售一個B種禮盒可獲利18元,該店主決定每售出一個B種禮盒,為愛心公益基金捐款m元,每個A種禮盒的利潤不變,在(2)的條件下,要使A、B兩種禮盒全部售出后所有方案獲利均相同,m的值應(yīng)是多少?此時這個批發(fā)部獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,若OBC邊的中點,則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點P在以DE為直徑的半圓上運動,則PF2+PG2的最小值為( 。

A. B. C. 34 D. 10

查看答案和解析>>

同步練習冊答案