【題目】如圖,是由三個(gè)正方形組成的圖形,則∠1+∠2+∠3等于( )
A.60°
B.90°
C.120°
D.180°
【答案】B
【解析】解:如圖,
∵圖中是三個(gè)正方形,
∴∠4=∠5=∠6=90°,
∵△ABC的內(nèi)角和為180°,
∴∠BAC+∠BCA+∠ABC=180°,
∵∠1+∠4+∠BAC=180°,∠2+∠6+∠ABC=180°,∠3+∠5+∠ACB=180°,
∴∠1+∠4+∠BAC+∠2+∠6+∠ABC+∠3+∠5+∠ACB=540°,
∴∠1+∠2+∠3=540°﹣(∠4+∠5+∠6+∠BAC+∠ABC+∠ACB)=540°﹣90°﹣90°﹣90°﹣180°=90°,
故選:B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用三角形的內(nèi)角和外角和正方形的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓形靠在墻角的截面圖,A、B分別為⊙O的切點(diǎn),BC⊥AC,點(diǎn)P在上以2°/s的速度由A點(diǎn)向點(diǎn)B運(yùn)動(dòng)(A、B點(diǎn)除外),連接AP、BP、BA。
(1)當(dāng)∠PBA=28°,求∠OAP的度數(shù);
(2)若點(diǎn)P不在AO的延長(zhǎng)線上,請(qǐng)寫(xiě)出∠OAP與∠PBA之間的關(guān)系;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)幾秒時(shí),△APB為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,ABCD中,BE,CF分別是∠ABC和∠BCD的一平分線,BE,CF相交于點(diǎn)O.
(1)求證:BE⊥CF;
(2)試判斷AF與DE有何數(shù)量關(guān)系,并說(shuō)明理由;
(3)當(dāng)△BOC為等腰直角三角形時(shí),四邊形ABCD是何特殊四邊形?
(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線 AB,CD 相交于點(diǎn)O,OE 平分∠AOD,OF⊥OC.
(1)圖中∠AOF 的余角是 (把符合條件的角都填出來(lái));
(2)如果∠AOC=130°36′,那么根據(jù) ,可得∠BOD= °;
(3)如果∠1與∠3的度數(shù)之比為3:4,求∠EOC和∠2的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列兩個(gè)等式: , ,給出定義如下:
我們稱(chēng)使等式成立的一對(duì)有理數(shù), 為“共生有理數(shù)對(duì)”,記為(, ),如:數(shù)對(duì)(, ),(, ),都是“共生有理數(shù)對(duì)”.
(1)判斷數(shù)對(duì)(, ),(, )是不是“共生有理數(shù)對(duì)”,寫(xiě)出過(guò)程;
(2)若(, )是“共生有理數(shù)對(duì)”,求的值;
(3)若(, )是“共生有理數(shù)對(duì)”,則(, ) “共生有理數(shù)對(duì)”(填“是”或“不是”);說(shuō)明理由;
(4)請(qǐng)?jiān)賹?xiě)出一對(duì)符合條件的 “共生有理數(shù)對(duì)”為 (注意:不能與題目中已有的“共生有理數(shù)對(duì)”重復(fù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將點(diǎn)P(﹣2,3)向下平移4個(gè)單位得到點(diǎn)P′,則點(diǎn)P′所在象限為( 。
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com