【題目】如圖,在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中.
(1)把△ABC平移至A′的位置,使點(diǎn)A與A′對應(yīng),得到△A′B′C′;
(2)圖中可用字母表示,與線段AA′平行且相等的線段有哪些?
(3)求四邊形ACC′A′的面積.
【答案】解:(1)△A′B′C′如圖所示;
(2)由平移的性質(zhì),與線段AA′平行且相等的線段有BB′、CC′;
故答案為:BB′、CC′;
(3)四邊形ACC′A′的面積=6×6﹣×1×2﹣×5×4﹣×1×2﹣×5×4
=36﹣1﹣10﹣1﹣10
=36﹣22
=14.
【解析】(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)B、C平移后的對應(yīng)點(diǎn)B′、C′的位置,然后順次連接即可;
(2)根據(jù)平移的性質(zhì),對應(yīng)點(diǎn)的連線互相平行且相等解答;
(3)利用四邊形ACC′A′所在的矩形的面積減去四周四個(gè)小直角三角形的面積,列式計(jì)算即可得解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A在四邊形BCDE的外部時(shí),記∠AEB為∠1,∠ADC為∠2,則∠A、∠1與∠2的數(shù)量關(guān)系,結(jié)論正確的是( )
A. ∠1=∠2+∠A B. ∠1=2∠A+∠2
C. ∠1=2∠2+2∠A D. 2∠1=∠2+∠A
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=5,AB=4,點(diǎn)D為邊AB上一點(diǎn),將△BCD沿直線CD折疊,使點(diǎn)B恰好落在邊OA上的點(diǎn)E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系.
(1)求OE的長及經(jīng)過O,D,C三點(diǎn)拋物線的解析式;
(2)一動點(diǎn)P從點(diǎn)C出發(fā),沿CB以每秒2個(gè)單位長度的速度向點(diǎn)B運(yùn)動,同時(shí)動點(diǎn)Q從E點(diǎn)出發(fā),沿EC以每秒1個(gè)單位長度的速度向點(diǎn)C運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒,當(dāng)t為何值時(shí),DP=DQ;
(3)若點(diǎn)N在(1)中拋物線的對稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出M點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果多邊形的每個(gè)內(nèi)角都比它相鄰的外角的4倍多30°,求這個(gè)多邊形的內(nèi)角和及對角線的總條數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題中,錯(cuò)誤的命題是( ).
A.四條邊都相等的四邊形是菱形;
B.對角線互相垂直平分的四邊形是正方形;
C.有三個(gè)角是直角的四邊形是矩形;
D.一組對邊平行且相等,對角線垂直且相等的四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ABC+∠ECB=180°,∠P=∠Q,
(1)AB與ED平行嗎?為什么?
(2)∠1與∠2是否相等?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是z的一次函數(shù),z是x的正比例函數(shù).
(1)問:y是x的一次函數(shù)嗎?
(2)若當(dāng)x=5時(shí),y=2;當(dāng)x=-3時(shí),y=6,求當(dāng)x=1時(shí)y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長是( 。
A. 2 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對應(yīng)點(diǎn)B′.
(1)補(bǔ)全△A′B′C′根據(jù)下列條件,利用網(wǎng)格點(diǎn)和三角板畫圖:
(2)畫出AB邊上的中線CD;
(3)畫出BC邊上的高線AE;
(4)△A′B′C′的面積
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com