【題目】如圖,A、P、B、C是⊙O上的四點(diǎn),∠APC=∠CPB=60°,過點(diǎn)C作CM∥BP交PA的延長(zhǎng)線于點(diǎn)M.
(1)求證:△ACM≌△BCP;
(2)若PA=1,PB=2,求△PCM的面積.
【答案】(1)證明見解析;(2).
【解析】
試題(1)根據(jù)圓周角定理由∠APC=∠CPB=60°得∠BAC=∠ABC=60°,則△ABC是等邊三角形,所以BC=AC,∠ACB=60°,再由CM∥BP得到∠PCM=∠BPC=60°,有可判斷△PCM是等邊三角形,得到PC=MC,∠M=60°,易得∠PCB=∠ACM,然后利用“AAS“可判斷△ACM≌△BCP≌△ACM;
(2)由△ACM≌△BCP≌△ACM得AM=PB=2,則PM=PA+AM=3,由于△PCM是等邊三角形,于是可根據(jù)等邊三角形的性質(zhì)計(jì)算其面積.
試題解析:(1)∵∠APC=∠CPB=60°,∴∠BAC=∠ABC=60°.∴△ABC是等邊三角形.
∴BC=AC,∠ACB=60°.
∵CM∥BP,∴∠PCM=∠BPC=60°.
又∵∠APC=60°,∴△PCM是等邊三角形. ∴PC=MC,∠M=60°.
∵∠BCA-∠PCA=∠PCM-∠PCA,∴∠PCB=∠ACM.
在△ACM和△BCP中,,
∴△ACM≌△BCP≌△ACM(AAS).
(2)∵△ACM≌△BCP,∴AM=PB=2.∴PM=PA+AM=1+2=3.
∵△PCM是等邊三角形,∴△PCM的面積=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:若,求的值.
解:∵,∴,
,∴,,∴.
根據(jù)你的觀察,探究下面的問題:
(1)已知,求的值;
(2)已知△ABC的三邊長(zhǎng),且滿足,求c的取值范圍;
(3)已知,,比較的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,⊙A與x軸交于B(2,0)、C(8,0)兩點(diǎn),與y軸相切于點(diǎn)D,則點(diǎn)A的坐標(biāo)是( 。
A. (5,4) B. (4,5) C. (5,3) D. (3,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時(shí),若AB=2,CE=2,求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)了統(tǒng)計(jì)知識(shí)后,小明就本班同學(xué)的上學(xué)方式進(jìn)行了一次調(diào)查統(tǒng)計(jì),圖(1)和圖(2)是他通過采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息,解答以下問題:
(1)求該班共有多少名學(xué)生;
(2)在圖(1)中,將表示“步行”的部分補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,計(jì)算出“騎車”部分所對(duì)應(yīng)的圓心角的度數(shù);
(4)如果全年級(jí)共600名同學(xué),請(qǐng)你估算全年級(jí)步行上學(xué)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,點(diǎn)F為AC中點(diǎn),⊙O經(jīng)過點(diǎn)B,F(xiàn),且與AC交于點(diǎn)D,與AB交于點(diǎn)E,與BC交于點(diǎn)G,連結(jié)BF,DE,弧EFG的長(zhǎng)度為(1+)π.
(1)求⊙O的半徑;
(2)若DE∥BF,且AE=a,DF=2+﹣a,請(qǐng)判斷圓心O和直線BF的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:至少有一組對(duì)邊相等的四邊形為“等對(duì)邊四邊形”.
(1)請(qǐng)寫出一個(gè)你學(xué)過的特殊四邊形中是“等對(duì)邊四邊形”的名稱;
(2)如圖1,四邊形ABCD是“等對(duì)邊四邊形”,其中AB=CD,邊BA與CD的延長(zhǎng)線交于點(diǎn)M,點(diǎn)E、F是對(duì)角線AC、BD的中點(diǎn),若∠M=60°,求證:EFAB;
(3)如圖2.在△ABC中,點(diǎn)D、E分別在邊AC、AB上,且滿足∠DBC=∠ECB∠A,線段CE、BD交于點(diǎn).
①求證:∠BDC=∠AEC;
②請(qǐng)?jiān)趫D中找到一個(gè)“等對(duì)邊四邊形”,并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直立在點(diǎn)處的標(biāo)桿長(zhǎng),站立在點(diǎn)處的觀察者從點(diǎn)處看到標(biāo)桿頂、旗桿頂在一條直線上.已知,,,求旗桿高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖及探究:
已知:線段AB=a.
(1)完成尺規(guī)作圖:
點(diǎn)P在線段AB所在直線上方,PA=PB,且點(diǎn)P到AB的距離等于,連接PA,PB,在線段AB上找到一點(diǎn)Q使得QB=PB,連接PQ,并直接回答∠PQB的度數(shù);
(2)若將(1)中的條件“點(diǎn)P到AB的距離等于”替換為“PB取得最大值”,其余所有條件都不變,此時(shí)點(diǎn)P的位置記為,點(diǎn)Q的位置記為,連接,并直接回答∠的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com