【題目】【探索發(fā)現(xiàn)】

如圖,是一張直角三角形紙片,∠B=90°,小明想從中剪出一個(gè)以∠B為內(nèi)角且面積最大的矩形,經(jīng)過多次操作發(fā)現(xiàn),當(dāng)沿著中位線DE、EF剪下時(shí),所得的矩形的面積最大,隨后,他通過證明驗(yàn)證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為   

【拓展應(yīng)用】

如圖,在△ABC中,BC=a,BC邊上的高AD=h,矩形PQMN的頂點(diǎn)P、N分別在邊AB、AC上,頂點(diǎn)Q、M在邊BC上,則矩形PQMN面積的最大值為   .(用含a,h的代數(shù)式表示)

【靈活應(yīng)用】

如圖,有一塊缺角矩形”ABCDEAB=32,BC=40,AE=20,CD=16,小明從中剪出了一個(gè)面積最大的矩形(∠B為所剪出矩形的內(nèi)角),求該矩形的面積.

【實(shí)際應(yīng)用】

如圖,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測(cè)量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐師傅從這塊余料中裁出了頂點(diǎn)M、N在邊BC上且面積最大的矩形PQMN,求該矩形的面積.

【答案】詳見解析.

【解析】試題解分析:【探索發(fā)現(xiàn)】:由中位線知EF=BC、ED=AB、由可得;

【拓展應(yīng)用】:由APN∽△ABC,可得PN=a-PQ,設(shè)PQ=x,由S矩形PQMN=PQPN═-x-2+,據(jù)此可得;

【靈活應(yīng)用】:添加如圖1輔助線,取BF中點(diǎn)I,FG的中點(diǎn)K,由矩形性質(zhì)知AE=EH=20、CD=DH=16,分別證AEF≌△HED、CDG≌△HDEAF=DH=16、CG=HE=20,從而判斷出中位線IK的兩端點(diǎn)在線段ABDE上,利用【探索發(fā)現(xiàn)】結(jié)論解答即可;

【實(shí)際應(yīng)用】:延長BA、CD交于點(diǎn)E,過點(diǎn)EEHBC于點(diǎn)H,由tanB=tanCEB=EC、BH=CH=54EH=BH=72,繼而求得BE=CE=90,可判斷中位線PQ的兩端點(diǎn)在線段AB、CD上,利用【拓展應(yīng)用】結(jié)論解答可得.

試題解析:【探索發(fā)現(xiàn)】

EFEDABC中位線,

EDABEFBC,EF=BC,ED=AB,

又∠B=90°,

∴四邊形FEDB是矩形,

【拓展應(yīng)用】

PNBC,

∴△APN∽△ABC

,即,

PN=a-PQ,

設(shè)PQ=x

S矩形PQMN=PQPN=xa-x=-x2+ax=-x-2+,

∴當(dāng)PQ=時(shí),S矩形PQMN最大值為.

【靈活應(yīng)用】

如圖1,延長BA、DE交于點(diǎn)F,延長BC、ED交于點(diǎn)G,延長AE、CD交于點(diǎn)H,取BF中點(diǎn)I,FG的中點(diǎn)K,

由題意知四邊形ABCH是矩形,

AB=32,BC=40,AE=20,CD=16,

EH=20DH=16,

AE=EHCD=DH,

AEFHED中,

∴△AEF≌△HEDASA),

AF=DH=16,

同理CDG≌△HDE,

CG=HE=20,

BI==24,

BI=2432

∴中位線IK的兩端點(diǎn)在線段ABDE上,

過點(diǎn)KKLBC于點(diǎn)L

由【探索發(fā)現(xiàn)】知矩形的最大面積為×BGBF=×40+20×32+16=720,

答:該矩形的面積為720

【實(shí)際應(yīng)用】

如圖2,延長BA、CD交于點(diǎn)E,過點(diǎn)EEHBC于點(diǎn)H

tanB=tanC=,

∴∠B=C

EB=EC,

BC=108cm,且EHBC

BH=CH=BC=54cm,

tanB==

EH=BH=×54=72cm,

RtBHE中,BE==90cm,

AB=50cm,

AE=40cm

BE的中點(diǎn)Q在線段AB上,

CD=60cm

ED=30cm,

CE的中點(diǎn)P在線段CD上,

∴中位線PQ的兩端點(diǎn)在線段AB、CD上,

由【拓展應(yīng)用】知,矩形PQMN的最大面積為BCEH=1944cm2,

答:該矩形的面積為1944cm2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個(gè)長方形操場(chǎng)的四角都設(shè)計(jì)一塊半徑相同的四分之一圓形的花壇,若圓形的半徑為r米,廣場(chǎng)的長為a米,寬為b米.

(1)請(qǐng)列式表示操場(chǎng)空地的面積;

(2)若休閑廣場(chǎng)的長為 50米,寬為20米,圓形花壇的半徑為 3米,求操場(chǎng)空地的面積.(π取 3.14,計(jì)算結(jié)果保留 0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,假命題的是( 。

A. 四個(gè)角都相等的四邊形是矩形

B. 兩組對(duì)邊分別相等的四邊形是平行四邊形

C. 對(duì)角線互相垂直且相等的四邊形是正方形

D. 兩條對(duì)角線互相垂直平分的四邊形是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共20只,某學(xué)習(xí)小組做摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù)上述過程,下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):

摸球的次數(shù)n

100

150

200

500

800

1000

摸到白球的次數(shù)m

58

96

116

295

484

601

摸到白球的頻率

0.64

0.58

0.605

0.601

1)請(qǐng)將表中的數(shù)據(jù)補(bǔ)充完整,

2)請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的概率約是   .(精確到0.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABDCE,F,G,H分別是ADBC,BDAC的中點(diǎn).

1)證明:EGEH;(2)證明:四邊形EHFG是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于的分式方程有負(fù)分?jǐn)?shù)解,且關(guān)于的不等式組的解集為,那么符合條件的所有整數(shù)的積是( )

A. B. 0 C. 3 D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了傳承中華優(yōu)秀的傳統(tǒng)文化,市教育局決定開展經(jīng)典誦讀進(jìn)校園活動(dòng),某校園團(tuán)委組織八年級(jí)100名學(xué)生進(jìn)行經(jīng)典誦讀選拔賽,賽后對(duì)全體參賽學(xué)生的成績進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:

請(qǐng)根據(jù)所給信息,解答以下問題:

(1)表中 ; ;

(2)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中組對(duì)應(yīng)的圓心角的度數(shù);

(3)已知有四名同學(xué)均取得98分的最好成績,其中包括來自同一班級(jí)的甲、乙兩名同學(xué),學(xué)校將從這四名同學(xué)中隨機(jī)選出兩名參加市級(jí)比賽,請(qǐng)用列舉法或樹狀圖法求甲、乙兩名同學(xué)都被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于數(shù)據(jù):80,88,85,85,83,83,84.下列說法中錯(cuò)誤的有( )

A、這組數(shù)據(jù)的平均數(shù)是84;

B、這組數(shù)據(jù)的眾數(shù)是85;

C、這組數(shù)據(jù)的中位數(shù)是84;

D、這組數(shù)據(jù)的方差是36.

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將矩形紙片ABCD按如圖方式折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落到C′處,折痕為EF.若AD9AB6,求折痕EF的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案