【題目】如圖,AB⊙O的直徑,MOA的中點(diǎn),弦CDAB于點(diǎn)M,過點(diǎn)DDECACA的延長線于點(diǎn)E

(1)連接AD,則∠OAD   °;

(2)求證:DE⊙O相切;

(3)點(diǎn)F上,∠CDF45°,DFAB于點(diǎn)N.若DE3,求FN的長.

【答案】(1)60;(2)證明見解析;(3).

【解析】

1)由CDABMOA的中點(diǎn),利用三角函數(shù)可以得到∠DOM60°,進(jìn)而得到OAD是等邊三角形,∠OAD60°

2)只需證明DEOD.便可以得到DE與⊙O相切.

3)利用圓的綜合知識,可以證明,∠CND90°,∠CFN60°,根據(jù)特殊角的三角函數(shù)值可以得到FN的數(shù)值.

解:(1)如圖1,連接OD,AD

AB是⊙O的直徑,CDAB

AB垂直平分CD

MOA的中點(diǎn),

OMOAOD

cosDOM,

∴∠DOM60°

又:OAOD

∴△OAD是等邊三角形

∴∠OAD60°

故答案為:60°

(2)CDAB,AB是⊙O的直徑,

CMMD

MOA的中點(diǎn),

AMMO

又∵∠AMC=∠DMO,

∴△AMC≌△OMD

∴∠ACM=∠ODM

CAOD

DECA,

∴∠E90°

∴∠ODE180°﹣∠E90°

DEOD

DE與⊙O相切.

(3)如圖2,連接CFCN,

OACDM,

MCD中點(diǎn).

NCND

∵∠CDF45°,

∴∠NCD=∠NDC45°

∴∠CND90°

∴∠CNF90°

(1)可知∠AOD60°

∴∠ACD=AOD=30°

RtCDE中,∠E90°,∠ECD30°DE3,

CD=

RtCND中,∠CND90°,∠CDN45°,CD6

CN=CD·sin45°=3

(1)知∠CAD2OAD120°,

∴∠CFD180°﹣∠CAD60°

RtCNF中,∠CNF90°,∠CFN60°,CN=3

FN=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某物流公 司承接A、B兩貨物運(yùn)輸業(yè)務(wù),已知5月份A貨物運(yùn)費(fèi)單價(jià)為50元/噸,B貨物運(yùn)費(fèi)單價(jià)為30元/噸,共收取運(yùn)費(fèi)9500元6月份由于油價(jià)上漲,運(yùn)費(fèi)單價(jià)上漲為:A貨物70元/噸,B貨物40元/噸;該物流公司6月承接的A貨物和B種數(shù)量5月份相同,6月份共收取運(yùn)費(fèi)13000元。

1該物流公司月運(yùn)輸兩種貨物各多少噸?

2該物流公司預(yù)計(jì)7月份運(yùn)輸這兩種貨物330噸,且A貨物的數(shù)量不大于B貨物的2倍,在運(yùn)費(fèi)單價(jià)與6月份相同的情況下,該物流公司7月份最多將收到多少運(yùn)輸費(fèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠甲、乙兩個(gè)部門各有員工400人,為了解這兩個(gè)部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過程如下,請補(bǔ)充完整.

收集數(shù)據(jù)

從甲、乙兩個(gè)部門各隨機(jī)抽取20名員工,進(jìn)行了生產(chǎn)技能測試,測試成績(百分制)如下:

甲 78 86 74 81 75 76 87 70 75 90

75 79 81 70 74 80 86 69 83 77

乙 93 73 88 81 72 81 94 83 77 83

80 81 70 81 73 78 82 80 70 40

整理、描述數(shù)據(jù)

按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

成績

人數(shù)

部門

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

0

0

1

11

7

1

(說明:成績80分及以上為生產(chǎn)技能優(yōu)秀,70--79分為生產(chǎn)技能良好,60--69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)

分析數(shù)據(jù)

兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:

得出結(jié)論:

.估計(jì)乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為____________;

.可以推斷出_____________部門員工的生產(chǎn)技能水平較高,理由為_____________.(至少從兩個(gè)不同的角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富校園文化,某校決定舉行學(xué)生趣味運(yùn)動(dòng)會,將比賽項(xiàng)目確定為袋鼠跳,夾球跑,跳大繩,綁腿跑和拔河賽5項(xiàng),為了解學(xué)生對這5項(xiàng)運(yùn)動(dòng)的喜歡情況,隨機(jī)調(diào)查了該校部分學(xué)生最喜歡的一種項(xiàng)目(每名學(xué)生必選且只能選擇5項(xiàng)中的一種),并將調(diào)查結(jié)果繪制成如圖所示的不完整的統(tǒng)計(jì)圖表:

根據(jù)圖表中提供的信息解答下列問題:

1)求a,b的值.

2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整.

3)根據(jù)調(diào)查結(jié)果,請你估計(jì)該校2500名學(xué)生中有多少名學(xué)生最喜歡綁腿跑.

學(xué)生最喜歡的活動(dòng)項(xiàng)目的人數(shù)統(tǒng)計(jì)表

部門

平均數(shù)

中位數(shù)

眾數(shù)

78.3

77.5

75

78

80.5

81

項(xiàng)目

學(xué)生數(shù)(名)

百分比(%

袋鼠跳

45

15

夾球跑

a

10

跳大繩

75

25

綁腿跑

b

20

拔河賽

90

30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ACBD8,E、FG、H分別是邊AB、BCCD、DA的中點(diǎn),則EG2+FH2的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個(gè)問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計(jì)).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某物流公 司承接A、B兩貨物運(yùn)輸業(yè)務(wù),已知5月份A貨物運(yùn)費(fèi)單價(jià)為50元/噸,B貨物運(yùn)費(fèi)單價(jià)為30元/噸,共收取運(yùn)費(fèi)9500元;6月份由于油價(jià)上漲,運(yùn)費(fèi)單價(jià)上漲為:A貨物70元/噸,B貨物40元/噸;該物流公司6月承接的A貨物和B種數(shù)量5月份相同,6月份共收取運(yùn)費(fèi)13000元。

1該物流公司月運(yùn)輸兩種貨物各多少噸?

2該物流公司預(yù)計(jì)7月份運(yùn)輸這兩種貨物330噸,且A貨物的數(shù)量不大于B貨物的2倍,在運(yùn)費(fèi)單價(jià)與6月份相同的情況下,該物流公司7月份最多將收到多少運(yùn)輸費(fèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:

在綜合與實(shí)踐課上,老師讓同學(xué)們以矩形紙片的剪拼為主題開展數(shù)學(xué)活動(dòng).如圖1,將矩形紙片沿對角線剪開,得到.并且量得,.

操作發(fā)現(xiàn):

(1)將圖1中的以點(diǎn)為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn),使,得到如圖2所示的,過點(diǎn)的平行線,與的延長線交于點(diǎn),則四邊形的形狀是________.

(2)創(chuàng)新小組將圖1中的以點(diǎn)為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn),使、、三點(diǎn)在同一條直線上,得到如圖3所示的,連接,取的中點(diǎn),連接并延長至點(diǎn),使,連接、,得到四邊形,發(fā)現(xiàn)它是正方形,請你證明這個(gè)結(jié)論.

實(shí)踐探究:

(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將沿著方向平移,使點(diǎn)與點(diǎn)重合,此時(shí)點(diǎn)平移至點(diǎn),相交于點(diǎn),如圖4所示,連接,試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,(1)正方形ABCD及等腰RtAEF有公共頂點(diǎn)A,EAF90°, 連接BEDF.RtAEF繞點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,BE、DF具有怎樣的數(shù)量關(guān)系和位置關(guān)系?結(jié)合圖(1)給予證明;

(2)將(1)中的正方形ABCD變?yōu)榫匦?/span>ABCD,等腰RtAEF變?yōu)?/span>RtAEF,且ADkAB,AFkAE,其他條件不變.(1)中的結(jié)論是否發(fā)生變化?結(jié)合圖(2)說明理由;

(3)將(2)中的矩形ABCD變?yōu)槠叫兴倪呅?/span>ABCD,將RtAEF變?yōu)?/span>AEF,且∠BADEAF,其他條件不變.(2)中的結(jié)論是否發(fā)生變化?結(jié)合圖(3),如果不變,直接寫出結(jié)論;如果變化,直接用k表示出線段BE、DF的數(shù)量關(guān)系,用表示出直線BE、DF形成的銳角.

查看答案和解析>>

同步練習(xí)冊答案