【題目】如圖1,點EF在直線l的同一側(cè),要在直線l上找一點K,使KE與KF的距離之和最小,我們可以作出點E關(guān)于l的對稱點E′,連接FE′交直線L于點K,則點K即為所求.
(1)(實踐運用)拋物線y=ax2+bx+c經(jīng)過點A(﹣1,0)、B(3,0)、C(0,﹣3).如圖2.
①求該拋物線的解析式;
②在拋物線的對稱軸上找一點P,使PA+PC的值最小,并求出此時點P的坐標(biāo)及PA+PC的最小值.
(2)(知識拓展)在對稱軸上找一點Q,使|QA﹣QC|的值最大,并求出此時點Q的坐標(biāo).
【答案】(1)①y=x2﹣2x﹣3,②點P的坐標(biāo)為(1,﹣2),PA+PC的最小值為3;(2)點Q的坐標(biāo)為(1,﹣6).
【解析】分析:(1)①由點A、B的坐標(biāo)可將拋物線的解析式變形為交點式,代入點C的坐標(biāo)即可求出a值,此題得解;
②由點A、B關(guān)于拋物線的對稱軸對稱可得出連接BC交拋物線對稱軸于點P,此時PA+PC的值最小,根據(jù)拋物線的解析式可求出其對稱軸為直線x=1,由點B、C的坐標(biāo)利用待定系數(shù)法可求出過點B、C的直線的解析式,代入x=1求出y值,由此即可得出點P的坐標(biāo),再利用勾股定理求出線段BC的長即可;
(2)連接AC并延長AC交拋物線對稱軸與點Q,此時|QA﹣QC|的值最大,且|QA﹣QC|的最大值為線段AC的長(三角形兩邊之差小于第三邊),由點A、C的坐標(biāo)利用待定系數(shù)法可求出過點A、C的直線的解析式,代入x=1求出y值,由此即可得出點Q的坐標(biāo),此題得解.
詳解:(1)①∵拋物線與x軸的交點為A(﹣1,0)、B(3,0),∴拋物線的解析式為y=a(x+1)(x﹣3).
∵拋物線過點C(0,﹣3),∴﹣3=(0+1)×(0﹣3)a,∴a=1,∴該拋物線的解析式為y=(x+1)(x﹣3)=x2﹣2x﹣3.
②∵點A、B關(guān)于拋物線的對稱軸對稱,∴連接BC交拋物線對稱軸于點P,此時PA+PC的值最小,如圖3所示.
∵拋物線的解析式為y=x2﹣2x﹣3=(x﹣1)2﹣4,∴拋物線的對稱軸為直線x=1.
利用待定系數(shù)法可求出過點B、C的直線為y=x﹣3,當(dāng)x=1時,y=x﹣3=1﹣3=﹣2,∴點P的坐標(biāo)為(1,﹣2),PA+PC的最小值為BC==3.
(2)連接AC并延長AC交拋物線對稱軸與點Q,此時|QA﹣QC|的值最大,且|QA﹣QC|的最大值為線段AC的長,如圖4所示.
利用待定系數(shù)法可求出過點A、C的直線為y=﹣3x﹣3,當(dāng)x=1時,y=﹣3x﹣3=﹣3×1﹣3=﹣6,∴點Q的坐標(biāo)為(1,﹣6).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,∠AOB . 求作:∠A′O′B′,使∠A′O′B′=∠AOB . 作法:
①以________為圓心,________為半徑畫弧.分別交OA , OB于點C , D .
②畫一條射線O′A′,以________為圓心,________長為半徑畫弧,交O′A′于點C′,
③以點________為圓心________長為半徑畫弧,與第2步中所畫的弧交于點D′.
④過點________畫射線O′B′,則∠A′O′B′=∠AOB .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列圖形的變化過程,解答以下問題:
如圖,在△ABC中,D為BC邊上的一動點(D點不與B、C兩點重合).DE∥AC交AB于E點,DF∥AB交AC于F點.
(小題1)試探索AD滿足什么條件時,四邊形AEDF為菱形,并說明理由;
(小題2)在(1)的條件下,△ABC滿足什么條件時,四邊形AEDF為正方形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點C作CF平行于BA交PQ于點F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
(3)若AD=3,AE=5,則菱形AECF的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,以下幾種說法中:①和是同位角;②和是同位角;③和是內(nèi)錯角;④和是同旁內(nèi)角;⑤和是同位角;⑥和是同位角;正確的個數(shù)是( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃購買A、B兩種計算器共100個,要求A種計算器數(shù)量不低于B種的,且不高于B種的.已知買1個A種計算器和1個B種計算器共需250元,買2個A種計算器和3個B種計算器的費用相等。
(1)求兩種計算器的單價。
(2)求如何購買可使總費用最低。
(3)由于市場行情波動,實際購買時,A種計算器單價下調(diào)m元(m>0),同時B種計算器單價上調(diào)了m元,此時購買這兩種計算器所需最少費用為12200元,求m的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD向右平移一段距離后得到四邊形.
(1)找出圖中存在的平行且相等的四條線段(即四條線段全部互相平行且相等);
(2)找出圖中存在的四組相等的角;
(3)四邊形ABCD與四邊形的形狀、大小相同嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AD=5,AB=3.若M為射線AD上的一個動點,將△ABM沿BM折疊得到△NBM.若△NBC是直角三角形.則所有符合條件的M點所對應(yīng)的AM長度的和為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論: ① c=0;②該拋物線的對稱軸是直線x=﹣1;③當(dāng)x=1時,y=2a;④am+bm+a>0(m≠﹣1);⑤設(shè)A(100,y),B(﹣100,y)在該拋物線上,則y>y.其中正確的結(jié)論有___________ .(寫出所有正確結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com