【題目】如圖是某學(xué)校草場一角,在長為b米,寬為a米的長方形場地中間,有并排兩個大小一樣的籃球場,兩個籃球場中間以及籃球場與長方形場地邊沿的距離都為c米.
(1)用代數(shù)式表示這兩個籃球場的占地面積.
(2)當(dāng)a=30,b=40,c=3時,計算出一個籃球場的面積.

【答案】
(1)解:這兩個籃球場的占地面積為(b﹣3c)(a﹣2c)=ab﹣2bc﹣3ac+6c2(平方米)
(2)解:當(dāng)a=30,b=40,c=3時,一個籃球場的面積為 ×(40﹣3×3)×(30﹣2×3)=342(平方米)
【解析】(1)求出兩個長方形的長和寬,即可求出面積;(2)代入 (b﹣3c)(a﹣2c)求出即可.
【考點精析】掌握代數(shù)式求值是解答本題的根本,需要知道求代數(shù)式的值,一般是先將代數(shù)式化簡,然后再將字母的取值代入;求代數(shù)式的值,有時求不出其字母的值,需要利用技巧,“整體”代入.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①35=3×3×3×3×3;②﹣1是單項式,且它的次數(shù)為1;③若∠1=90°﹣∠2,則∠1與∠2互為余角;④對于有理數(shù)n、x、y(其中xy≠0),若 = ,則x=y.其中不正確的有(
A.3個
B.2個
C.1個
D.0個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點分別在x軸、y軸上,OA=3,OB=4,連接AB.點P在平面內(nèi),若以點P、A、B為頂點的三角形與△AOB全等(點P與點O不重合),則點P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD的頂點A在第三象限,對角線AC的中點在坐標(biāo)原點,一邊AB與x軸平行且AB=2,若點A的坐標(biāo)為(a,b),則點D的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《一千零一夜》中有這樣一段文字:有一群鴿子,其中一部分在樹上歡歌,另一部分在地上覓食,樹上的一只鴿子對地上的覓食的鴿子說:“若從你們中飛上來一只,則樹下的鴿子就是整個鴿群的 ;若從樹上飛下去一只,則樹上、樹下的鴿子有一樣多了.”你知道樹上、樹下各有多少只鴿子嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,過點D作DE∥AC且DE=OC,連接CE,OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為4,∠ABC=60°,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某食品加工廠需要一批食品包裝盒,供應(yīng)這樣包裝盒有兩種方案可供選擇: 方案一:從包裝盒加工廠直接購買,購買所需的費y1與包裝盒數(shù)x滿足如圖1所示的函數(shù)關(guān)系.
方案二:租賃機器自己加工,所需費用y2(包括租賃機器的費用和生產(chǎn)包裝盒的費用)與包裝盒數(shù)x滿足如圖2所示的函數(shù)關(guān)系.根據(jù)圖象回答下列問題:

(1)方案一中每個包裝盒的價格是多少元?
(2)方案二中租賃機器的費用是多少元?生產(chǎn)一個包裝盒的費用是多少元?
(3)請分別求出y1、y2與x的函數(shù)關(guān)系式.
(4)如果你是決策者,你認(rèn)為應(yīng)該選擇哪種方案更省錢?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程(不等式)組
(1)解方程組:
(2)解不等式組: ,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把多項式2ab2-5a2b-7+a3b3按字母b的降冪排列,排在第三項的是___________

查看答案和解析>>

同步練習(xí)冊答案