【題目】如圖,P是矩形ABCD內(nèi)的任意一點(diǎn),連接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,設(shè)它們的面積分別是S1、S2、S3、S4 , 給出如下結(jié)論: ①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1 , 則S4=2S2;④若S1=S2 , 則P點(diǎn)在矩形的對角線上.
其中正確的結(jié)論的序號是(把所有正確結(jié)論的序號都填在橫線上).
【答案】②和④
【解析】解:如右圖,過點(diǎn)P分別作PF⊥AD于點(diǎn)F,PE⊥AB于點(diǎn)E, ∵△APD以AD為底邊,△PBC以BC為底邊,
∴此時(shí)兩三角形的高的和為AB,即可得出S1+S3= 矩形ABCD面積;
同理可得出S2+S4= 矩形ABCD面積;
∴S2+S4=S1+S3(故②正確);
當(dāng)點(diǎn)P在矩形的兩條對角線的交點(diǎn)時(shí),S1+S2=S3+S4 . 但P是矩形ABCD內(nèi)的任意一點(diǎn),所以該等式不一定成立.(故①不一定正確);
③若S3=2S1 , 只能得出△APD與△PBC高度之比,S4不一定等于2S2;(故③錯(cuò)誤);
④若S1=S2 , ×PF×AD= PE×AB,
∴△APD與△PBA高度之比為: = ,
∵∠DAE=∠PEA=∠PFA=90°,
∴四邊形AEPF是矩形,
∴此時(shí)矩形AEPF與矩形ABCD相似,
∴ = ,
∴P點(diǎn)在矩形的對角線上.(故④選項(xiàng)正確)
故答案為:②和④.
根據(jù)三角形面積求法以及矩形性質(zhì)得出S1+S3= 矩形ABCD面積,以及 = , = ,即可得出P點(diǎn)一定在AC上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,O是矩形ABCD的對角線的交點(diǎn),作DE∥AC,CE∥BD,DE、CE相交于點(diǎn)E.
(1)求證:四邊形OCED是菱形.
(2)連接OE,若AD=4,CD=3,求菱形OCED的周長和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是邊BC所在的直線上的動點(diǎn)(點(diǎn)D不與B、C重合),過點(diǎn)D作DE∥AC交直線AB于點(diǎn)E,DF∥AB交直線AC于點(diǎn)F.
(1)求證:AF=DE;
(2)若AC=5,DE=6,則DF= .
(3)試探究:D在不同位置時(shí),DE,DF,AC具有怎樣的數(shù)量關(guān)系,直接寫出結(jié)論:
①當(dāng)點(diǎn)D在線段BC上時(shí),關(guān)系是:;
②當(dāng)點(diǎn)D在線段BC延長線上時(shí),關(guān)系是:;
③當(dāng)點(diǎn)D在線段CB延長線上時(shí),關(guān)系是:;
(4)請選擇(3)中你探究獲得的其中一個(gè)結(jié)論證明之.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明家的住房平面圖呈長方形,被分割成3個(gè)正方形和2個(gè)長方形后仍是中心對稱圖形.若只知道原住房平面圖長方形的周長,則分割后不用測量就能知道周長的圖形的標(biāo)號為( )
A.①②
B.②③
C.①③
D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB=AD,對角線BD為⊙O的直徑,AC與BD交于點(diǎn)E.點(diǎn)F為CD延長線上,且DF=BC.
(1)證明:AC=AF;
(2)若AD=2,AF=,求AE的長;
(3)若EG∥CF交AF于點(diǎn)G,連接DG.證明:DG為⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,AB=2AD.
(1)作AE平分∠BAD交DC于E(尺規(guī)作圖,保留作圖痕跡);
(2)在(1)的條件下,連接BE,判定△ABE的形狀(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙中,△ABC的三個(gè)頂點(diǎn)及D、E、F、G、H、五個(gè)點(diǎn)分別位于小正方形的頂點(diǎn)上.
(1)畫出△ABC繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)90°后的圖形.
(2)先從E、F、G、H四個(gè)點(diǎn)中任意取兩個(gè)不同的點(diǎn),再和D點(diǎn)構(gòu)成三角形,求所得三角形與△ABC面積相等的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上有三點(diǎn)A、B、C,且A、B兩點(diǎn)間的距離是4,B、C兩點(diǎn)的距離是2,若點(diǎn)A表示的數(shù)是﹣2,則點(diǎn)C表示的數(shù)是 . (寫出所有可能的結(jié)果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com