【題目】如圖,已知正七邊形ABCDEFG,請僅用無刻度的直尺,分別按下列要求畫圖.
(1)在圖1中,畫出一個以AB為邊的平行四邊形;
(2)在圖2中,畫出一個以AF為邊的菱形.

【答案】
(1)解:如下圖所示:


(2)解:如下圖所示:


【解析】(1)連接AF、BE、CG,CG交AF于M,交BE于N.四邊形ABNM是平行四邊形.(2)連接AF、BE、CG,CG交AF于M,交BE于N,連接DF交BE于H,四邊形MNHF是菱形.
【考點精析】認真審題,首先需要了解平行四邊形的性質(zhì)(平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分),還要掌握菱形的性質(zhì)(菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點A(﹣3,0)和點B,交y軸于點C(0,3).

(1)求拋物線的函數(shù)表達式;
(2)若點P在拋物線上,且SAOP=4SBOC , 求點P的坐標(biāo);
(3)如圖b,設(shè)點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2= 的圖象交與A(1,M),B(n,﹣1)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D,連接AO,BO.得出以下結(jié)論:
①點A和點B關(guān)于直線y=﹣x對稱;
②當(dāng)x<1時,y2>y1;
③SAOC=SBOD
④當(dāng)x>0時,y1 , y2都隨x的增大而增大.
其中正確的是( )

A.①②③
B.②③
C.①③
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,垂直于x軸的直線AB分別與拋物線C1:y=x2(x≥0)和拋物線C2:y= (x≥0)交于A,B兩點,過點A作CD∥x軸分別與y軸和拋物線C2交于點C,D,過點B作EF∥x軸分別與y軸和拋物線C1交于點E,F(xiàn),則 的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2﹣2 ax﹣9a與坐標(biāo)軸交于A,B,C三點,其中C(0,3),∠BAC的平分線AE交y軸于點D,交BC于點E,過點D的直線l與射線AC,AB分別交于點M,N.

(1)直接寫出a的值、點A的坐標(biāo)及拋物線的對稱軸;
(2)點P為拋物線的對稱軸上一動點,若△PAD為等腰三角形,求出點P的坐標(biāo);
(3)證明:當(dāng)直線l繞點D旋轉(zhuǎn)時, + 均為定值,并求出該定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,⊙O的直徑AB=12,P是弦BC上一動點(與點B,C不重合),∠ABC=30°,過點P作PD⊥OP交⊙O于點D.
(1)如圖2,當(dāng)PD∥AB時,求PD的長;
(2)如圖3,當(dāng) = 時,延長AB至點E,使BE= AB,連接DE. ①求證:DE是⊙O的切線;
②求PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P在等邊△ABC的內(nèi)部,且PC=6,PA=8,PB=10,將線段PC繞點C順時針旋轉(zhuǎn)60°得到P'C,連接AP',則sin∠PAP'的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解
我們知道,1+2+3+…+n= ,那么12+22+32+…+n2結(jié)果等于多少呢?
在圖1所示三角形數(shù)陣中,第1行圓圈中的數(shù)為1,即12 , 第2行兩個圓圈中數(shù)的和為2+2,即22 , …;第n行n個圓圈中數(shù)的和為 ,即n2 , 這樣,該三角形數(shù)陣中共有 個圓圈,所有圓圈中數(shù)的和為12+22+32+…+n2

(1)將三角形數(shù)陣經(jīng)兩次旋轉(zhuǎn)可得如圖2所示的三角形數(shù)陣,觀察這三個三角形數(shù)陣各行同一位置圓圈中的數(shù)(如第n﹣1行的第一個圓圈中的數(shù)分別為n﹣1,2,n),發(fā)現(xiàn)每個位置上三個圓圈中數(shù)的和均為 , 由此可得,這三個三角形數(shù)陣所有圓圈中數(shù)的總和為3(12+22+32+…+n2)= , 因此,12+22+32+…+n2=
(2)根據(jù)以上發(fā)現(xiàn),計算: 的結(jié)果為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案