精英家教網 > 初中數學 > 題目詳情

【題目】如圖,點D、C在BF上,AC∥DE,∠A=∠E,BD=CF,
(1)求證:AB=EF.
(2)連接AF,BE,猜想四邊形ABEF的形狀,并說明理由.

【答案】
(1)證明:∵AC∥DE,

∴∠ACD=∠EDF,

∵BD=CF,

∴BD+DC=CF+DC,

即BC=DF,

又∵∠A=∠E,

∴△ABC≌△EFD(AAS),

∴AB=EF


(2)猜想:四邊形ABEF為平行四邊形,

理由如下:由(1)知△ABC≌△EFD,

∴∠B=∠F,

∴AB∥EF,

又∵AB=EF,

∴四邊形ABEF為平行四邊形.


【解析】(1)利用AAS證明△ABC≌△EFD,再根據全等三角形的性質可得AB=EF;(2)首先根據全等三角形的性質可得∠B=∠F,再根據內錯角相等兩直線平行可得到AB∥EF,又AB=EF,可證出四邊形ABEF為平行四邊形.
【考點精析】解答此題的關鍵在于理解平行四邊形的判定的相關知識,掌握兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖①,在△ABC中,D、E分別是AB,AC上的點,AB=AC,AD=AE,然后將△ADE繞點A順時針旋轉一定角度,連接BD,CE,得到圖②,將BD,CE分別延長至M,N,使DM= BD,EN= CE,連接AM,AN,MN得到圖③,請解答下列問題:

(1)在圖②中,BD與CE的數量關系是

(2)在圖③中,猜想AM與AN的數量關系,∠MAN與∠BAC的數量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,O是坐標原點,點A的坐標是(﹣4,0),點B的坐標是(0,b)(b>0),點P是直線AB上的一個動點,記點P關于y軸對稱的點為P′.
(1)當b=3時(如圖1),

①求直線AB的函數表達式.
(2)②在x軸上找一點Q(點O除外),使△APQ與△AOB全等,直接寫出點Q的所有坐標
(3)若點P在第一象限(如圖2),設點P的橫坐標為a,作PC⊥x軸于點C,連結AP′,CP′.當△ACP′是以點P′為直角頂點的等腰直角三角形時,求出a,b的值.

(4)當線段OP′恰好被直線AB垂直平分時(如圖3),直接寫出b=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,O為AC中點,過點O的直線分別與AB,CD交于點E,F,連接BF交AC于點M,連接DE,BO.若∠COB=60°,FO=FC,則下列結論:
①FB⊥OC,OM=CM;
②△EOB≌△CMB;
③四邊形EBFD是菱形;
④MB:OE=3:2.
其中正確結論的個數是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中,直線ykx1(k≠0)與雙曲線y (x0)相交于點P(1,m)

(1)k的值.

(2)若點Q與點P關于直線yx對稱,求點Q的坐標.

(3)若過P,Q兩點的拋物線與y軸的交點為N(0, )求該拋物線的函數表達式及其對稱軸.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】5x3y20,則25x÷23y2_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法:
①若a與c相交,則a與b相交;
②若a∥b,b∥c,那么a∥c;
③過一點有且只有一條直線與已知直線平行;
④在同一平面內,兩條直線的位置關系有平行、相交、垂直三種.
其中錯誤的有(  )
A.3個
B.2個
C.1個
D.0個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某天的最低氣溫是5℃,最高氣溫是7℃,則這一天的最高氣溫與最低氣溫的差是( 。

A.2B.2C.12°D.12

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】八年級(1)班學生在完成課題學習體質健康測試中的數據分析后,利用課外活動時間積極參加體育鍛煉,每位同學從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓練,訓練后都進行了測試.現將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.

請你根據上面提供的信息回答下列問題:

1)扇形圖中跳繩部分的扇形圓心角為 度,該班共有學生 人,訓練后籃球定時定點投籃平均每個人的進球數是

2)老師決定從選擇鉛球訓練的3名男生和1名女生中任選兩名學生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.

查看答案和解析>>

同步練習冊答案