如圖,已知直線(xiàn)l1與l2交于一點(diǎn)P,l1的函數(shù)表達(dá)式是y=2x+3,l2的函數(shù)表達(dá)式是y=kx+b(k≠0).點(diǎn)P的橫坐標(biāo)是-1,且l2與y軸的交點(diǎn)A的縱坐標(biāo)也是-1.
(1)求直線(xiàn)l2的函數(shù)表達(dá)式.
(2)根據(jù)圖象,直接寫(xiě)出當(dāng)x在什么范圍時(shí),有2x+3>kx+b>-1.
分析:(1)先確定P點(diǎn)與A點(diǎn)坐標(biāo),然后利用待定系數(shù)法確定直線(xiàn)l2的函數(shù)表達(dá)式;
(2)觀察函數(shù)圖象得到當(dāng)-1<x<0時(shí),2x+3>kx+b>-1.
解答:解:(1)把x=-1代入y=2x+3得y=-2+3=1,
∴P點(diǎn)坐標(biāo)為(-1,1),
把P(-1,1)、A(0,-1)代入y=kx+b得
-k+b=1
b=-1
,
解得
k=-2
b=-1
,
∴直線(xiàn)l2的函數(shù)表達(dá)式為y=-2x-1;

(2)當(dāng)-1<x<0,2x+3>kx+b>-1.
點(diǎn)評(píng):本題考查了兩直線(xiàn)平行或相交的問(wèn)題:直線(xiàn)y=k1x+b1(k1≠0)和直線(xiàn)y=k2x+b2(k2≠0)平行,則k1=k2;若直線(xiàn)y=k1x+b1(k1≠0)和直線(xiàn)y=k2x+b2(k2≠0)相交,則交點(diǎn)坐標(biāo)滿(mǎn)足兩函數(shù)的解析式.也考查了待定系數(shù)法求函數(shù)的解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線(xiàn)l1的解析式為y=3x+6,直線(xiàn)l1與x軸,y軸分別相交于A,B兩點(diǎn),直線(xiàn)l2經(jīng)過(guò)B,C兩點(diǎn),點(diǎn)C的坐標(biāo)為(8,0),又已知點(diǎn)P在x軸上從點(diǎn)A向點(diǎn)C移動(dòng),點(diǎn)Q在直線(xiàn)l2從點(diǎn)C精英家教網(wǎng)向點(diǎn)B移動(dòng).點(diǎn)P,Q同時(shí)出發(fā),且移動(dòng)的速度都為每秒1個(gè)單位長(zhǎng)度,設(shè)移動(dòng)時(shí)間為t秒(1<t<10).
(1)求直線(xiàn)l2的解析式;
(2)設(shè)△PCQ的面積為S,請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式;
(3)試探究:當(dāng)t為何值時(shí),△PCQ為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線(xiàn)l1:y=-x+2與直線(xiàn)l2:y=2x+8相交于點(diǎn)F,l1、l2分別交x軸于點(diǎn)E、G,矩形AB精英家教網(wǎng)CD頂點(diǎn)C、D分別在直線(xiàn)l1、l2,頂點(diǎn)A、B都在x軸上,且點(diǎn)B與點(diǎn)G重合.
(1)求點(diǎn)F的坐標(biāo)和∠GEF的度數(shù);
(2)求矩形ABCD的邊DC與BC的長(zhǎng);
(3)若矩形ABCD從原地出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度平移,設(shè)移動(dòng)時(shí)間為t(0≤t≤6)秒,矩形ABCD與△GEF重疊部分的面積為s,求s關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出相應(yīng)的t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•燕山區(qū)一模)如圖,已知直線(xiàn)l1:y=-x+2與l2y=
1
2
x+
1
2
,過(guò)直線(xiàn)l1與x軸的交點(diǎn)P1作x軸的垂線(xiàn)交l2于Q1,過(guò)Q1作x軸的平行線(xiàn)交l1于P2,再過(guò)P2作x軸的垂線(xiàn)交l2于Q2,過(guò)Q2作x軸的平行線(xiàn)交l1于P3,…,這樣一直作下去,可在直線(xiàn)l1上繼續(xù)得到點(diǎn)P4,P5,…,Pn,….設(shè)點(diǎn)Pn的橫坐標(biāo)為xn,則x2=
1
2
1
2
,xn+1與xn的數(shù)量關(guān)系是
xn+2xn+1=3
xn+2xn+1=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線(xiàn)l1∥l2∥l3∥l4,相鄰兩條平行直線(xiàn)間的距離都是2,線(xiàn)段AB的兩端點(diǎn)分別在直線(xiàn)l1、l3上并與l2相交于點(diǎn)E,
①AE與BE的長(zhǎng)度大小關(guān)系為
AE=BE
AE=BE
;
②若以線(xiàn)段AB為一邊作正方形ABCD,C、D兩點(diǎn)恰好分別在直線(xiàn)l2、l4上,則sinα=
5
5
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案