如圖:已知在中,邊的中點,過點,垂足分別為

(1)求證:DE=DF;
(2)若,BE=1,求的周長.
(1)通過證明(AAS)得DE=DF (2)的周長為12

試題分析:(1)證明:
,
,

的中點,
.         
(AAS).
∴DE=DF
(2)解: ,,
∴△ABC為等邊三角形.                            
,                                    

,                                 
∴BE=BD,                                    
,∴BD=2,∴BC=2BD=4,              
的周長為12.
點評:本題考查等邊三角形,三角形全等,解答本題的關(guān)鍵是熟悉等邊三角形的概念,掌握三角形全等的判定方法,會證明兩個三角形全等
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知△ABC為等邊三角形,BD為中線,延長BC至E,使CE=CD=1,連接DE,則DE=       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC,請你作出△ABC的高CD,中線BF,角平分線AE(不寫畫法).
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,在△ABC中,∠BAC=90º, AB=AC,點D為直線BC上一動點(點D不與B、C重合).以AD為邊作正方形ADEF.連接CF.

(1)如圖1,當(dāng)點D在線段BC上時,求證:①CF=BD;②CF⊥BD;
(2)如圖2,當(dāng)點D在線段BC的延長線上時,其它條件不變,線段CF與BD的上述關(guān)系是否還成立?請直接寫出結(jié)論即可(不必證明);
(3)如圖3,當(dāng)點D在線段BC的反向延長線上,且點A、F在直線BC的兩側(cè),其它條件不變,線段CF與BD的上述關(guān)系是否還成立?若成立,請證明你的結(jié)論;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知∠C=90°,∠1=∠2,若BC=10,BD=6,則點D到邊AB的距離為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形網(wǎng)格中的每個小正方形邊長都是1,每個小格的頂點叫格點,請在給定的網(wǎng)格中按要求畫圖:
(1)從點A出發(fā)在圖中畫一條線段AB,使得AB=
(2)畫出一個以(1)中的AB為斜邊的等腰直角三角形,使三角形的三個頂點都在格點上,并根據(jù)所畫圖形求出等腰直角三角形的腰長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,∠A+∠ABC+∠C+∠D+∠E+∠F=          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點A所表示的數(shù)是(    )  
A.1.5 B.C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

問題:已知線段AB、CD相交于點O,AB=CD.連接AD、BC,請?zhí)砑右粋條件,使得△AOD≌△COB.
小明的做法及思路
小明添加了條件:∠DAB=∠BCD.他的思路是:分兩種情況畫圖①、圖②,在兩幅圖中,

都作直線DA、BC,兩直線交于點E.
由∠DAB=∠BCD,可得∠EAB=∠ECD.
∵AB=CD,∠E=∠E,
∴△EAB≌△ECD.∴EB=ED,EA=EC.
圖①中ED-EA=EB-EC,即AD=CB.
圖②中EA-ED=EC-EB,即AD=CB.
又∵∠DAB=∠BCD,∠AOD=∠COB,
∴△AOD≌△COB.
數(shù)學(xué)老師的觀點:
(1)數(shù)學(xué)老師說:小明添加的條件是錯誤的,請你給出解釋.
你的想法:
(2)請你重新添加一個滿足問題要求的條件
,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案