精英家教網 > 初中數學 > 題目詳情

【題目】如圖所示,四邊形ABCD是矩形,把△ACD沿AC折疊到△ACD′,AD′與BC交于點E,若AD=4,DC=3,求BE的長.

【答案】

【解析】試題分析:根據矩形性質得AB=DC=3,BC=AD=4ADBC,B=90°,再根據折疊性質得∠DAC=D′AC,而∠DAC=ACB,則∠D′AC=ACB,所以AE=EC,設BE=x,則EC=4-x,AE=4-x,然后在RtABE中利用勾股定理可計算出BE

試題解析:∵四邊形ABCD為矩形,

AB=DC=3,BC=AD=4,ADBC,B=90

ACD沿AC折疊到ACD′,AD′BC交于點E,

∴∠DAC=D′AC

ADBC,

∴∠DAC=ACB,

∴∠D′AC=ACB,

AE=EC

BE=x,則EC=4xAE=4x,

RtABE,AB+BE=AE

3+x=(4x) ,解得x=,

BE的長為.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知AM∥CN,點B為平面內一點,AB⊥BC于B.

(1)如圖1,直接寫出∠A和∠C之間的數量關系________

(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;

(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列命題中,假命題的是(

A.四邊形的外角和等于內角和 B.所有的矩形都相似

C.對角線相等的菱形是正方形 D.對角線互相垂直的平行四邊形是菱形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】改寫命題對角線互相平分的四邊形是平行四邊形:如果__________,那么_______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】因為直角三角形是特殊三角形,所以一般三角形全等的條件都可以用來說明2個直角三角形全等.________(判斷對錯)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學足球隊的18名隊員的年齡情況如下表:

年齡(單位:歲)

14

15

16

17

18

人數

3

6

4

4

1

則這些隊員年齡的眾數和中位數分別是(

A.15,15 B.15,15.5 C.15,16 D.16,15

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知 , 三點,其中滿足關系式.

(1)求的值;

(2)如果在第二象限內有一點,那么請用含的式子表示四邊形的面積;

(3)在(2)的條件下,是否存在點,使四邊形的面積與三角形的面積相等?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果﹣20%表示減少20%,那么+6%表示_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“x4倍與2的和是非負數用不等式表示為__________________

查看答案和解析>>

同步練習冊答案