【題目】如圖,在△OAB中,OA=OB,C為AB中點,以O為圓心,OC長為半徑作圓,AO與⊙O交于點E,直線OB與⊙O交于點F和D,連接EF、CF與OA交于點G.
(1)求證:直線AB是⊙O的切線;
(2)求證:ODEG=OGEF;
(3)若AB=8,BD=2,求⊙O的半徑.
【答案】(1)(2)見解析 (3)3.
【解析】(1)利用等腰三角形的性質(zhì),證明OC⊥AB即可;
(2)證明OC∥EG,推出△GOC∽△GEF即可解決問題;
(3)設OC=OD=r,在Rt△BOC中,根據(jù)OB2=OC2+BC2,列出方程即可解決問題;
(1)證明:∵OA=OB,AC=BC,
∴OC⊥AB,
∴⊙O是AB的切線.
(2)證明:∵OA=OB,AC=BC,
∴∠AOC=∠BOC,
∵OE=OF,
∴∠OFE=∠OEF,
∵∠AOB=∠OFE+∠OEF,
∴∠AOC=∠OEF,
∴OC∥EF,
∴△GOC∽△GEF,
∴=,∵OD=OC,
∴ODEG=OGEF.
(3)解:設OC=OD=r,
在Rt△BOC中,∵OB2=OC2+BC2,
∴(r+2)2=r2+42,
∴r=3,
∴⊙O的半徑為3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一次函數(shù)分別交x,y軸于A,C兩點,拋物線與經(jīng)過點A,C.
(1)求此拋物線的函數(shù)表達式;
(2)若P為拋物線上A,C兩點間的一個動點,過點P作直線,交直線AC于點Q,當點P運動到什么位置時,線段PQ的長度最大?求此最大長度,及此時P點坐標。
(3)在(2)條件下,直線與軸交于N點與直線AC交于點M,當N,M,Q,D四點是平行四邊行時,直接寫出D點的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B是反比例函數(shù)圖象上的兩點,過點A作AC⊥y軸,垂足為C,AC交OB于點D.若D為OB的中點,△AOD的面積為3,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為提升青少年的身體素質(zhì),深圳市在全市中小學推行“陽光體育”活動,某學校為滿足學生的需求,準備再購買一些籃球和足球,已知用800元購買籃球的個數(shù)比購買足球的個數(shù)少2個,足球的單價為籃球單價的.
(1)求籃球、足球的單價分別為多少元?
(2)如果計劃用不多于5200元購買籃球、足球共60個,那么至少要購買多少個足球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】深圳市民中心廣場上有旗桿如圖①所示,某學校興趣小組測量了該旗桿的高度,如圖②,某一時刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為16米,落在斜坡上的影長CD為8米,AB⊥BC;同一時刻,太陽光線與水平面的夾角為45°.1米的標桿EF豎立在斜坡上的影長FG為2米,求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解八年級學生的課外閱讀情況,我校語文組從八年級隨機抽取了若干名學生,對他們的讀書時間進行了調(diào)查并將收集的數(shù)據(jù)繪成了兩幅不完整的統(tǒng)計圖,請你依據(jù)圖中提供的信息,解答下列問題:(每組含最小值不含最大值)
(1)從八年級抽取了多少名學生?
(2)填空(直接把答案填到橫線上)
①“2-2.5小時”的部分對應的扇形圓心角為度;
②課外閱讀時間的中位數(shù)落在(填時間段)內(nèi).
(3)如果八年級共有800名學生,請估算八年級學生課外閱讀時間不少于1.5小時的有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將多項式4x2+1再加上一項,使它能分解因式成(a+b)2的形式,以下是四位學生所加的項,其中錯誤的是( )
A. 2x B. ﹣4x C. 4x4 D. 4x
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,點E在邊AD上,∠ABE=45°,BE=DE,連接BD,點P在線段DE上,過點P作PQ∥BD交BE于點Q,連接QD.設PD=x,△PQD的面積為y,則能表示y與x函數(shù)關系的圖象大致是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com