已知:如圖,直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E為AB上一點.DE平分∠ADC,CE平分∠BCD.

求證:以AB為直徑的圓與DC相切.

答案:
解析:

  證:過E作EF⊥DC,垂足為F,

  ∵ED平分∠ADC,DA⊥EA于A,EF⊥DF于F,∴EA=EF.

  同理EB=EF,

  ∴EB=EA;

  即E為AB中點.

  又EF=EA=EB=AB.

  ∴以AB為直徑的圓與DC相切.

  思路點撥:要證以AB為直徑的圓與直線DC相切.只要證AB中點(圓心)到直線DC距離等于半徑(AB的一半).先證E為AB中點,再證E到DC距離等于AB.

  評注:本題關(guān)鍵是找出線段AB的中點并證明.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,直角梯形ABCD中,∠BCD=90°,∠CDA=60°,AB=AD,AB=4,DF=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,直角梯形ABCD中,AD∥BC,∠B=90°,AB=8,AD=12,tanC=
43
,AM∥DC,E精英家教網(wǎng)、F分別是線段AD、AM上的動點(點E與A、D不重合)且∠FEM=∠AMB,設(shè)DE=x,MF=y.
(1)求證:AM=DM;
(2)求y與x的函數(shù)關(guān)系式并寫出定義域;
(3)若點E在邊AD上移動時,△EFM為等腰三角形,求x的值;
(4)若以BM為半徑的⊙M和以ED為半徑的⊙E相切,求△EMD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于點F,交BC于點G,交AB的延長線于點E,且AE=AC,連AG.精英家教網(wǎng)
(1)求證:FC=BE;
(2)若AD=DC=2,求AG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O切DC邊于E點,AD=3cm,BC=5cm.求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖在直角梯形COAB中,OC∥AB,以O(shè)為原點建立平面直角坐標系,A、B、C三點的坐標分別為A(8,0),B(8,11),C(0,5),點D為線段BC中點,已知D點的橫坐標為4,動點P從點O出發(fā),以每秒1個單位的速度,沿折線OABD的路線移動,至點D停止,設(shè)移動的時間為t秒

(1)求直線BC的解析式;
(2)若動點P在線段OA上移動,當(dāng)t為何值時,四邊形OPDC的面積是梯形COAB面積的
14
?
(3)動點P從點O出發(fā),沿折線OABD的路線移動過程中,設(shè)△OPD面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案