精英家教網(wǎng)已知:如圖,直角梯形ABCD中,∠BCD=90°,∠CDA=60°,AB=AD,AB=4,DF=2,求BF的長.
分析:過A作AH⊥FC于H,可得四邊形ABCH為矩形,再利用矩形的性質(zhì)和三角函數(shù)值求得AH,HD,然后即可求得CF即可.
解答:精英家教網(wǎng)解:如圖,過A作AH⊥FC于H,
則四邊形ABCH為矩形,
∴BC=AH,CH=AB,
∵∠CDA=60°,AD=AB=4
∴AH=ADsin60°=2
3
,HD=ADcos60°=2,
∴CF=CH+HD+DF=4+2+2=8,
∴BF=
BC2+CF2
=2
19

答;BF的長為2
19
點(diǎn)評:此題主要考查直角梯形,矩形的判定與性質(zhì),解直角三角形等知識點(diǎn),解得此題的關(guān)鍵是過A作AH⊥FC于H,得四邊形ABCH為矩形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,直角梯形ABCD中,AD∥BC,∠B=90°,AB=8,AD=12,tanC=
43
,AM∥DC,E精英家教網(wǎng)、F分別是線段AD、AM上的動點(diǎn)(點(diǎn)E與A、D不重合)且∠FEM=∠AMB,設(shè)DE=x,MF=y.
(1)求證:AM=DM;
(2)求y與x的函數(shù)關(guān)系式并寫出定義域;
(3)若點(diǎn)E在邊AD上移動時,△EFM為等腰三角形,求x的值;
(4)若以BM為半徑的⊙M和以ED為半徑的⊙E相切,求△EMD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于點(diǎn)F,交BC于點(diǎn)G,交AB的延長線于點(diǎn)E,且AE=AC,連AG.精英家教網(wǎng)
(1)求證:FC=BE;
(2)若AD=DC=2,求AG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O切DC邊于E點(diǎn),AD=3cm,BC=5cm.求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖在直角梯形COAB中,OC∥AB,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,A、B、C三點(diǎn)的坐標(biāo)分別為A(8,0),B(8,11),C(0,5),點(diǎn)D為線段BC中點(diǎn),已知D點(diǎn)的橫坐標(biāo)為4,動點(diǎn)P從點(diǎn)O出發(fā),以每秒1個單位的速度,沿折線OABD的路線移動,至點(diǎn)D停止,設(shè)移動的時間為t秒

(1)求直線BC的解析式;
(2)若動點(diǎn)P在線段OA上移動,當(dāng)t為何值時,四邊形OPDC的面積是梯形COAB面積的
14
?
(3)動點(diǎn)P從點(diǎn)O出發(fā),沿折線OABD的路線移動過程中,設(shè)△OPD面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案