【題目】已知a+b=2,ab=1,則a2b+ab2的值為____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程x(x﹣1)=0的根為( 。
A. x1=0,x2=﹣1B. x1=0,x2=1C. x1=1,x2=2D. x1=﹣1,x2=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖中直線L、N分別截過∠A的兩邊,且L∥N.根據(jù)圖中標(biāo)示的角,判斷下列各角的度數(shù)關(guān)系,何者正確?( 。
A.∠2+∠5>180°
B.∠2+∠3<180°
C.∠1+∠6>180°
D.∠3+∠4<180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了幫助某地區(qū)重建家園,某班全體學(xué)生積極捐款,捐款金額共2600元,其中18名女生人均捐款a元,則該班男生共捐款元.(用含有a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),拋物線y=ax2+bx+c與x軸交于A(x1,0)、B(x2,0)兩點(diǎn)(x1<0<x2),與y軸交于點(diǎn)C(0,-3),若拋物線的對稱軸為直線x=1,且tan∠OAC=3.
(1)求拋物線的函數(shù)解析式;
(2 若點(diǎn)D是拋物線BC段上的動點(diǎn),且點(diǎn)D到直線BC距離為,求點(diǎn)D的坐標(biāo)
(3)如圖(2),若直線y=mx+n經(jīng)過點(diǎn)A,交y軸于點(diǎn)E(0, -),點(diǎn)P是直線AE下方拋物線上一點(diǎn),過點(diǎn)P作x軸的垂線交直線AE于點(diǎn)M,點(diǎn)N在線段AM延長線上,且PM=PN,是否存在點(diǎn)P,使△PMN的周長有最大值?若存在,求出點(diǎn)P的坐標(biāo)及△PMN的周長的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡再求值:已知多項式A=3a2﹣6ab+b2 , B=﹣2a2+3ab﹣5b2 , 當(dāng)a=1,b=﹣1時,試求A+2B的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:善于思考的小軍在解方程組 時,采用了一種“整體代換”的解法:
解:將方程②變形:4x+10y+y=5 即2(2x+5y)+y=5③
把方程①帶入③得:2×3+y=5,∴y=﹣1
把y=﹣1代入①得x=4,∴方程組的解為 .
請你解決以下問題:
(1)模仿小軍的“整體代換”法解方程組
(2)已知x,y滿足方程組 .
(i)求x2+4y2的值;
(ii)求 + 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com