精英家教網 > 初中數學 > 題目詳情

【題目】如圖, 是半圓,連接AB,點O為AB的中點,點C,D在 上,連接AD,CO,BC,BD,OD.若∠COD=62°,且AD∥OC,則∠ABD的大小是(

A.26°
B.28°
C.30°
D.32°

【答案】B
【解析】解:∵AB是半圓的直徑,
∴∠ADB=90°,
∵AD∥OC,
∴∠A=∠COD=62°,
∴∠ABD=90°﹣∠A=28°;
故選:B.
【考點精析】關于本題考查的圓心角、弧、弦的關系和圓周角定理,需要了解在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,△ABCBA=BC,點DAB延長線上一點,DF⊥ACFBCE,

求證:△DBE是等腰三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A、B、C、D在同一條直線上,點E、F分別在直線AD的兩側,且AE=DF,∠A=∠D,AB=DC.

(1)求證:△ACE≌△DBF;

(2)求證:四邊形BFCE是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,ABC中,DC,BD分別是∠ACB和∠ABC的平分線,且∠A=α

(1)用含α的代數式表示∠CDB;

(2)若把圖①中∠ACB的平分線DC改為∠ACB的外角的平分線(如圖②),怎樣用含α的代數式表示∠CDB.

(3)若把圖①中“DC,DB分別是∠ACB和∠ABC的平分線改成“DC,BD分別是∠ACB和∠ABC的外角的平分線,(如圖③),怎樣用含α的代數式表示∠CDB.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖, 是半圓,連接AB,點O為AB的中點,點C,D在 上,連接AD,CO,BC,BD,OD.若∠COD=62°,且AD∥OC,則∠ABD的大小是(

A.26°
B.28°
C.30°
D.32°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】從一個等腰三角形紙片的某角的頂點出發(fā),能將其剪成兩個等腰三角形紙片,則原等腰三角形紙片的底角為_______________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在新晚報舉辦的“萬人戶外徒步活動”中,為統(tǒng)計參加活動人員的年齡情況,從參加人員中隨機抽取了若干人的年齡作為樣本,進行數據統(tǒng)計,制成如圖的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分).

(1)本次活動統(tǒng)計的樣本容量是多少?
(2)求本次活動中70歲以上的人數,并補全條形統(tǒng)計圖;
(3)本次參加活動的總人數約為12000人,請你估算參加活動人數最多的年齡段的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CB,AD=CD,對角線AC,BD相交于點OOEAB,OFCB,垂足分別是E、F.求證:OE=OF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:| ﹣1|﹣ +

查看答案和解析>>

同步練習冊答案