【題目】如圖,已知CDAB于點(diǎn)D,BEAC于點(diǎn)E,CD、BE交于點(diǎn)O,且AO平分BAC,則圖中的全等三角形共有( 。

A. 1對(duì) B. 2對(duì) C. 3對(duì) D. 4對(duì)

【答案】D

【解析】

共有四對(duì).分別為△ADO≌△AEO,△ADC≌△AEB△ABO≌△ACO,△BOD≌△COE.做題時(shí)要從已知條件開(kāi)始結(jié)合圖形利用全等的判定方法由易到難逐個(gè)尋找.

解答:解:∵CD⊥AB,BE⊥AC,AO平分∠BAC

∴∠ADO=∠AEO=90°,∠DAO=∠EAO

∵AO=AO

∴△ADO≌△AEO;(AAS

∴OD=OE,AD=AE

∵∠DOB=∠EOC,∠ODB=∠OEC=90°

∴△BOD≌△COE;(ASA

∴BD=CEOB=OC,∠B=∠C

∵AE=AD,∠DAC=∠CAB,∠ADC=∠AEB=90°

∴△ADC≌△AEB;(ASA

∵AD=AE,BD=CE

∴AB=AC

∵OB=OC,AO=AO

∴△ABO≌△ACO.(SSS

所以共有四對(duì)全等三角形.

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+1(a<0)的圖象過(guò)點(diǎn)(1,0)和(x1 , 0),且﹣2<x1<﹣1,下列5個(gè)判斷中:①b<0;②b﹣a<0;③a>b﹣1;④a<﹣ ;⑤2a<b+ ,正確的是(
A.①③
B.①②③
C.①②③⑤
D.①③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖中線段AB表示某工程的部分隧道,無(wú)人勘測(cè)飛機(jī)從隧道的一側(cè)點(diǎn)A出發(fā),沿著坡度為1:1.5的路線AE飛行,飛行至分界點(diǎn)C的正上方點(diǎn)D時(shí),測(cè)得隧道另一側(cè)點(diǎn)B的俯角為23°,繼續(xù)飛行至點(diǎn)E,測(cè)得點(diǎn)B的俯角為45°,此時(shí)點(diǎn)E離地面的高度EF=800米.

(1)分別求隧道AC和BC段的長(zhǎng)度;
(2)建工集團(tuán)安排甲、乙兩個(gè)金牌施工隊(duì)分別從隧道兩頭向中間施工,甲隊(duì)負(fù)責(zé)AC段施工,乙隊(duì)負(fù)責(zé)BC段施工,乙每天的工作量是甲的2倍,兩隊(duì)同時(shí)開(kāi)工5天后,甲隊(duì)將速度提高25%,乙隊(duì)將速度提高了150%,從而兩隊(duì)同時(shí)完成,求原計(jì)劃甲、乙兩隊(duì)每天各施工多少米.(參考數(shù)據(jù):tan23°≈0.4,cos23°≈0.9)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在方格紙中,點(diǎn)A,B,P都在格點(diǎn)上.請(qǐng)按要求畫(huà)出以AB為邊的格點(diǎn)四邊形,使P在四邊形內(nèi)部(不包括邊界上),且P到四邊形的兩個(gè)頂點(diǎn)的距離相等.
(1)在圖甲中畫(huà)出一個(gè)ABCD.
(2)在圖乙中畫(huà)出一個(gè)四邊形ABCD,使∠D=90°,且∠A≠90°.(注:圖甲、乙在答題紙上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】高鐵的開(kāi)通,給泰安市民出行帶來(lái)了極大的方便,五一期間,樂(lè)樂(lè)和穎穎相約到青島市某游樂(lè)場(chǎng)游玩,樂(lè)樂(lè)乘私家車從泰安出發(fā)1小時(shí)后,穎穎乘坐高鐵從泰安出發(fā),先到青島火車站,然后轉(zhuǎn)乘出租車到游樂(lè)園(換車時(shí)間忽略不計(jì)),兩人恰好同時(shí)到達(dá)游樂(lè)園,他們離開(kāi)泰安的距離y(千米)與時(shí)間t(小時(shí))的關(guān)系如圖所示,請(qǐng)結(jié)合圖象解決下面問(wèn)題.

(1)高鐵的平均速度是每小時(shí)多少千米;

(2)當(dāng)穎穎到達(dá)青島火車站時(shí),樂(lè)樂(lè)距離游樂(lè)園還有多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在《九章算術(shù)》中有求三角形面積公式底乘高的一半,但是在實(shí)際丈量土地面積時(shí),量出高并非易事,所以古人想到了能否利用三角形的三條邊長(zhǎng)來(lái)求面積.我國(guó)南宋著名的數(shù)學(xué)家秦九韶(年)提出了三斜求積術(shù),闡述了利用三角形三邊長(zhǎng)求三角形面積方法,簡(jiǎn)稱秦九韶公式.在海倫(公元年左右,生平不詳)的著作《測(cè)地術(shù)》中也記錄了利用三角形三邊長(zhǎng)求三角形面積的方法,相傳這個(gè)公式最早是由古希臘數(shù)學(xué)家阿基米德(公元前公元前年)得出的,故我國(guó)稱這個(gè)公式為海倫一秦九韶公式.它的表達(dá)為:三角形三邊長(zhǎng)分別為、、,則三角形的面積(公式里的為半周長(zhǎng)即周長(zhǎng)的一半).

請(qǐng)利用海倫一秦九韶公式解決以下問(wèn)題:

)三邊長(zhǎng)分別為、的三角形面積為__________.

)四邊形中,,,,,四邊形的面積為__________.

)五邊形中,,,,,,五邊形的面積為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.

(1)求證:△AEC≌△BED;

(2)若∠1=42°,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們的生活水平的提高,家用轎車越來(lái)越多地進(jìn)人普通家庭小明家買了一輛小轎車,他連續(xù)記錄了7天中每天行駛的路程,以50km為標(biāo)準(zhǔn),多于50km的記為“+”,不足50km的記為“-”,剛好50km的記為“0”,記錄數(shù)據(jù)如下表:

時(shí)間

第一天

第二天

第三天

第四天

第五天

第六天

第七天

路程(km)

-6

-12

0

+6

-18

+38

-8

(1)請(qǐng)你估計(jì)小明家的小轎車一月(按30天計(jì))行駛多少千米?

(2)若每行駛100km需要汽油8L,汽油每升6.75元,試求小明家一年(按12個(gè)月計(jì))的汽油費(fèi)用是多少元?(L為汽油單位:升)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知線段a、b、c滿足 ,且
(1)求a、b、c的值;
(2)若線段x是線段a、b的比例中項(xiàng),求x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案