【題目】已知一次函數(shù)y1=2x-3,y2=-x+6在同一直角坐標(biāo)系中的圖象如圖所示,它們的交點(diǎn)坐標(biāo)為C(3,3).
(1)根據(jù)圖象指出x為何值時(shí),y1>y2;x為何值時(shí),y1<y2.
(2)求這兩條直線與x軸所圍成的△ABC的面積.
【答案】(1)當(dāng)x>3時(shí),y1>y2,當(dāng)x<3時(shí),y1<y2;(2)這兩條直線與x軸所圍成的△ABC的面積為.
【解析】
(1)觀察圖象,直接寫(xiě)出答案即可;(2)分別求得點(diǎn)A、B的坐標(biāo),再利用三角形的面積公式求解即可.
(1)當(dāng)x>3時(shí),y1>y2;當(dāng)x<3時(shí),y1<y2.
(2)把y=0代入y=2x-3,得2x-3=0,
解得x=,
則點(diǎn)A坐標(biāo)為.
把y=0代入y=-x+6,得-x+6=0,
解得x=6,則點(diǎn)B坐標(biāo)為(6,0),
所以這兩條直線與x軸所圍成的△ABC的面積為×3×=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖數(shù)軸上兩點(diǎn)A、B所別應(yīng)的分別為﹣3、1,點(diǎn)P在數(shù)軸上從點(diǎn)A出發(fā)以每秒鐘2個(gè)單位的長(zhǎng)度的速度向右運(yùn)動(dòng),點(diǎn)Q在數(shù)軸上從點(diǎn)B出發(fā)以每秒鐘1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)直接寫(xiě)出線段AB的中點(diǎn)所對(duì)應(yīng)的數(shù)及t秒后點(diǎn)P所對(duì)應(yīng)的數(shù).
(2)若點(diǎn)P和點(diǎn)Q同時(shí)出發(fā),求點(diǎn)P和點(diǎn)Q相遇時(shí)的位置所對(duì)應(yīng)的數(shù);
(3)若點(diǎn)P比點(diǎn)Q遲1秒鐘出發(fā),問(wèn)點(diǎn)P出發(fā)幾秒后,點(diǎn)P和點(diǎn)Q剛好相距1個(gè)單位長(zhǎng)度.并問(wèn)此時(shí)數(shù)軸上是否存在一個(gè)點(diǎn)C,使其到點(diǎn)A、點(diǎn)P和點(diǎn)Q這三點(diǎn)的距離和最。咳舸嬖,直接寫(xiě)出點(diǎn)C所對(duì)應(yīng)的數(shù);若不存在,試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 A=3x2+3y2﹣2xy,B=xy﹣2y2﹣2x2.
求:(1)2A﹣3B.
(2)若|2x﹣3|=1,y2=9,|x﹣y|=y﹣x,求 2A﹣3B 的值.
(3)若 x=2,y=﹣4 時(shí),代數(shù)式 ax3by+5=17,那么當(dāng) x=﹣4,y=﹣時(shí),求代 數(shù)式 3ax﹣24by3+6 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B、C在數(shù)軸上表示的數(shù)分別為a、b、c,且OA+OB=OC,則下列結(jié)論中:
①abc<0;②a(b+c)>0;③a﹣c=b;④ .
其中正確的個(gè)數(shù)有 ( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c與x軸只有一個(gè)交點(diǎn),且圖象過(guò)A(x1 , m)、B(x1+n,m)兩點(diǎn),則m、n的關(guān)系為( 。
A.m= n
B.m= n
C.m=
D.m=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型企業(yè)為了保護(hù)環(huán)境,準(zhǔn)備購(gòu)買(mǎi)A、B兩種型號(hào)的污水處理設(shè)備共8臺(tái),用于同時(shí)治理不同成分的污水,若購(gòu)買(mǎi)A型2臺(tái)、B型3臺(tái)需54萬(wàn),購(gòu)買(mǎi)A型4臺(tái)、B型2臺(tái)需68萬(wàn)元.
(1)求出A型、B型污水處理設(shè)備的單價(jià);
(2)經(jīng)核實(shí),一臺(tái)A型設(shè)備一個(gè)月可處理污水220噸,一臺(tái)B型設(shè)備一個(gè)月可處理污水190噸,如果該企業(yè)每月的污水處理量不低于1565噸,請(qǐng)你為該企業(yè)設(shè)計(jì)一種最省錢(qián)的購(gòu)買(mǎi)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知正方形的邊長(zhǎng)為4,甲、乙兩動(dòng)點(diǎn)分別從正方形ABCD的頂點(diǎn)A、C同時(shí)沿正方形的邊開(kāi)始移動(dòng),甲點(diǎn)依順時(shí)針?lè)较颦h(huán)行,乙點(diǎn)依逆時(shí)針?lè)较颦h(huán)行,若乙的速度是甲的速度的3倍,則它們第2018次相遇在邊 ( )上.
A. AB B. BC C. CD D. DA
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是矩形ABCD的邊AD上的一動(dòng)點(diǎn),矩形的兩條邊AB、BC的長(zhǎng)分別是6和8,則點(diǎn)P到矩形的兩條對(duì)角線AC和BD的距離之和是( 。
A.4.8
B.5
C.6
D.7.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在現(xiàn)今“互聯(lián)網(wǎng)+”的時(shí)代,密碼與我們的生活已經(jīng)緊密相連,密不可分,而諸如“123456”、生日等簡(jiǎn)單密碼又容易被破解,因此利用簡(jiǎn)單方法產(chǎn)生一組容易記憶的密碼就很有必要了,有一種用“因式分解”法產(chǎn)生的密碼、方便記憶,其原理是:將一個(gè)多項(xiàng)式分解因式,如多項(xiàng)式:因式分解的結(jié)果為,當(dāng)時(shí),此時(shí)可以得到數(shù)字密碼171920.
(1)根據(jù)上述方法,當(dāng)時(shí),對(duì)于多項(xiàng)式分解因式后可以形成哪些數(shù)字密碼?(寫(xiě)出三個(gè))
(2)若一個(gè)直角三角形的周長(zhǎng)是24,斜邊長(zhǎng)為10,其中兩條直角邊分別為x、y,求出一個(gè)由多項(xiàng)式分解因式后得到的密碼(只需一個(gè)即可);
(3)若多項(xiàng)式因式分解后,利用本題的方法,當(dāng)時(shí)可以得到其中一個(gè)密碼為242834,求m、n的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com