將拋物線y=x2向左平移1個(gè)單位,再向下平移2個(gè)單位,得到拋物線的解析式為
A.y=x2-2x-1B.y=-x2+2x-1
C.y=x2+2x-1D.y=-x2+4x+1
C

試題分析:先根據(jù)拋物線的平移規(guī)律得到頂點(diǎn)式,再化為一般式即可.
將拋物線y=x2向左平移1個(gè)單位,再向下平移2個(gè)單位,得到拋物線的解析式為

故選C.
點(diǎn)評(píng):解題的關(guān)鍵是熟練掌握拋物線的平移規(guī)律:左加右減,上加下減.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知二次函數(shù)的圖象如圖所示, 其中對(duì)稱(chēng)軸為:x=1,則下列4個(gè)結(jié)論中正確的結(jié)論有(   )個(gè)

; ② ;③ ; ④ ;⑤ .
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線經(jīng)過(guò)點(diǎn)(,).
(1)求的值;
(2)若此拋物線的頂點(diǎn)為(,),用含的式子分別表示,并求之間的函數(shù)關(guān)系式;
(3)若一次函數(shù),且對(duì)于任意的實(shí)數(shù),都有,直接寫(xiě)出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某汽車(chē)在剎車(chē)后行駛的距離s(單位:m)與時(shí)間t(單位:s)之間的關(guān)系得部分?jǐn)?shù)據(jù)如下表:
時(shí)間t(s)
0
0.2
0.4
0.6
0.8
1.0
1.2

行駛距離s(m)
0
2.8
5.2
7.2
8.8
10
10.8

假設(shè)這種變化規(guī)律一直延續(xù)到汽車(chē)停止.
(1)根據(jù)這些數(shù)據(jù)在給出的坐標(biāo)系中畫(huà)出相應(yīng)的點(diǎn);

(2)選擇適當(dāng)?shù)暮瘮?shù)表示s與t之間的關(guān)系,求出相應(yīng)的函數(shù)解析式;
(3)剎車(chē)后汽車(chē)行駛了多長(zhǎng)距離才停止?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)的圖象過(guò)點(diǎn)(-1,15),
求m的值;
若二次函數(shù)圖象上有一點(diǎn)C,圖象與x軸交于A、B兩點(diǎn),且=3,求點(diǎn)C的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某小區(qū)廣場(chǎng)要設(shè)計(jì)一個(gè)矩形花壇,花壇的長(zhǎng)、寬分別為30 m、20 m,花壇中有一橫一縱的兩條通道,余下部分種植花卉.橫縱通道的寬度均為x m.

(1)求兩條通道的總面積S與x的函數(shù)關(guān)系式,不要求寫(xiě)出自變量x的取值范圍;
(2)當(dāng)種植花卉面為551米2時(shí),求橫、縱通道的寬度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

春節(jié)期間某水庫(kù)養(yǎng)殖場(chǎng)為適應(yīng)市場(chǎng)需求,連續(xù)用20天時(shí)間,采用每天降低水位以減少捕撈成本的辦法,對(duì)水庫(kù)中某種鮮魚(yú)進(jìn)行捕撈、銷(xiāo)售.九(1)班數(shù)學(xué)建模興趣小組根據(jù)調(diào)查,整理出第天(為整數(shù))的捕撈與銷(xiāo)售的相關(guān)信息如表:
鮮魚(yú)銷(xiāo)售單價(jià)(元/kg)
20
單位捕撈成本(元/kg)
5-
捕撈量(kg)
950-10x
(1)在此期間該養(yǎng)殖場(chǎng)每天的捕撈量與前一天的捕撈量相比是如何變化的         (填“增加”或“減少”了多少kg.)
(2)假定該養(yǎng)殖場(chǎng)每天捕撈和銷(xiāo)售的鮮魚(yú)沒(méi)有損失,且能在當(dāng)天全部售出,求第天的收入(元)與(天)之間的函數(shù)關(guān)系式?(當(dāng)天收入=日銷(xiāo)售額—日捕撈成本)
(3)試說(shuō)明⑵中的函數(shù)的變化情況,并指出在第幾天取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正方形ABCD的邊長(zhǎng)為4cm,動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)A出發(fā),以1cm/s的速度分別沿A→B→C和A→D→C的路徑向點(diǎn)C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x(單位:s),四邊形PBDQ的面積為y(單位:cm2),則y與x(0≤x≤8)之間的函數(shù)關(guān)系可用圖象表示為(    )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖是二次函數(shù)y=ax2+bx+c (a¹0)在平面直角坐標(biāo)系中的圖象,根據(jù)圖形判斷 ①>0;②++<0;③2-<0;④2+8a>4ac中,正確的是(填寫(xiě)序號(hào))     

查看答案和解析>>

同步練習(xí)冊(cè)答案