【題目】如圖,已知直線l1∥l2,且l3和l1,l2分別交于A,B兩點,點P在AB上.
(1)試找出∠1,∠2,∠3之間的關系并說出理由;
(2)如果點P在A,B兩點之間運動,問∠1,∠2,∠3之間的關系是否發(fā)生變化?
(3)如果點P在A,B兩點外側運動,試探究∠1,∠2,∠3之間的關系(點P和A,B不重合).
【答案】(1)∠1+∠2=∠3,理由見解析;(2)∠1+∠2=∠3,不變;(3)∠1-∠2=∠3或∠2-∠1=∠3,理由見解析.
【解析】試題分析:(1)過點P作l1的平行線,根據平行線的性質進行解題.(2)(3)都是同樣的道理.
試題解析:(1)∠1+∠2=∠3.
理由:過點P作l1的平行線PQ.
∵l1∥l2,
∴l1∥l2∥PQ.
∴∠1=∠4,∠2=∠5.
∵∠4+∠5=∠3,
∴∠1+∠2=∠3.
(2)∠1+∠2=∠3不變.
(3)∠1-∠2=∠3或∠2-∠1=∠3.
理由:①當點P在下側時,如圖,過點P作l1的平行線PQ.
∵l1∥l2,
∴l1∥l2∥PQ.
∴∠2=∠4,∠1=∠3+∠4.
∴∠1-∠2=∠3.
②當點P在上側時,同理可得∠2-∠1=∠3.
科目:初中數學 來源: 題型:
【題目】在一個不透明的盒子里裝著除顏色外完全相同的黑、白兩種小球共40個,小明做摸球試驗,他將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復上述過程,下表是試驗中的一組統(tǒng)計數據:
(1)請估計:當n很大時,摸到白球的概率約為______;(精確到0.1)
(2)估算盒子里有白球________個;
(3)若向盒子里再放入x個除顏色以外其他完全相同的球,這x個球中白球只有1個,每次將球攪拌均勻后,任意摸出一個球記下顏色再放回,通過大量重復摸球試驗后發(fā)現,摸到白球的頻率穩(wěn)定在50%,請推測x的值最有可能是多少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一個半徑為18 cm的圓,從中心挖去一個正方形,當挖去的正方形的邊長由小變大時,剩下部分的面積也隨之發(fā)生變化.
(1)若挖去的正方形邊長為x(cm),剩下部分的面積為y(cm2),則y與x之間的關系式是什么?
(2)當挖去的正方形的邊長由1 cm變化到9 cm時,剩下部分的面積由____變化到____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據題意解答:(1)如圖1的圖形我們把它稱為“8字形”,請說明∠A+∠B=∠C+∠D.
(2)閱讀下面的內容,并解決后面的問題: 如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度數.
解:∵AP、CP分別平分∠BAD、∠BCD
∴∠1=∠2,∠3=∠4
由(1)的結論得:∠P+∠3=∠1+∠B①,∠P+∠2=∠4+∠D②,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D
∴∠P= (∠B+∠D)=26°.
①如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,請猜想∠P的度數,并說明理由.
②在圖4中,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關系,直接寫出結論,無需說明理由.
③在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關系,直接寫出結論,無需說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在邊長為a的正方形中挖去一個邊長為b的小正方形(a>b)(如圖甲),把余下的部分拼成一個矩形(如圖乙),根據兩個圖形中陰影部分的面積相等,可以驗證( )
A. (a+b)2=a2+2ab+b2
B. (a﹣b)2=a2﹣2ab+b2
C. a2﹣b2=(a+b)(a﹣b)
D. (a+2b)(a﹣b)=a2+ab﹣2b2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把△ABC紙片沿DE折疊,當點A在四邊形BCDE的外部時,記∠AEB為∠1,∠ADC為∠2,則∠A、∠1與∠2的數量關系,結論正確的是( )
A. ∠1=∠2+∠A B. ∠1=2∠A+∠2
C. ∠1=2∠2+2∠A D. 2∠1=∠2+∠A
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D、E、F、G四點在△ABC的三邊上,其中DG與EF相交于點H.若 ∠ABC=∠EFC=70°,∠ACB=60°,∠DGB=40°,則下列三角形相似的是( )
A.△BDG,△CEF B.△ABC,△CEF C.△ABC,△BDG D.△FGH,△ABC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探究與發(fā)現:
圖1 圖2 圖3
(1)探究一:三角形的一個內角與另兩個內角的平分線所夾的角之間的關系
已知:如圖1,在△ADC中,DP、CP分別平分∠ADC和∠ACD,
試探究∠P與∠A的數量關系,并說明理由.
(2)探究二:四邊形的兩個個內角與另兩個內角的平分線所夾的角之間的關系
已知:如圖2,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,
試探究∠P與∠A+∠B的數量關系,并說明理由.
(3)探究三:六邊形的四個內角與另兩個內角的平分線所夾的角之間的關系
已知:如圖3,在六邊形ABCDEF中,DP、CP分別平分∠EDC和∠BCD,
請直接寫出∠P與∠A+∠B+∠E+∠F的數量關系:__ __ __.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB=2,AD=4,∠DAB=90°,AD∥BC.E是射線BC上的動點(點E與點B不重合),M是線段DE的中點,連結BD,交線段AM于點N,如果以A,N,D為頂點的三角形與△BME相似,則線段BE的長為___________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com