【題目】如圖,點EF分別是銳角∠A兩邊上的點,AE=AF,分別以點E,F為圓心,以AE的長為半徑畫弧,兩弧相交于點D,連接DE,DF

1)請你判斷所畫四邊形的性狀,并說明理由;

2)連接EF,若AE=8厘米,∠A=60°,求線段EF的長.

【答案】(1)詳見解析

(2)EF= 8

【解析】

(1)由AE=AF=ED=DF,根據(jù)四條邊都相等的四邊形是菱形,即可證得:四邊形AEDF是菱形,

(2)首先連接EF,由AE=AF,∠A=60°,可證得△EAF是等邊三角形,則可求得線段EF的長.

解:(1)菱形,理由如下:

根據(jù)題意得:AE=AF=ED=DF,

四邊形AEDF是菱形;

(2)連接EF,

∵AE=AF,∠A=60°,∴△EAF是等邊三角形,

∴EF=AE=8厘米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為實施鄉(xiāng)村振興戰(zhàn)略,解決某山區(qū)老百姓出行難的問題,當(dāng)?shù)卣疀Q定修建一條高速公路.其中一段長為146米的山體隧道貫穿工程由甲乙兩個工程隊負(fù)責(zé)施工.甲工程隊獨立工作2天后,乙工程隊加入,兩工程隊又聯(lián)合工作了1天,這3天共掘進(jìn)26.已知甲工程隊每天比乙工程隊多掘進(jìn)2.按此速度完成這項隧道貫穿工程,甲乙兩個工程隊還需聯(lián)合工作__________天.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著阿里巴巴、淘寶網(wǎng)、京東、小米等互聯(lián)網(wǎng)巨頭的崛起,催生了快遞行業(yè)的高速發(fā)展.據(jù)調(diào)查,杭州市某家小型快遞公司,今年一月份與三月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.

1)求該快遞公司投遞快遞總件數(shù)的月平均增長率;

2)如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成今年4月份的快遞投遞任務(wù)?如果不能,請問至少需要增加幾名業(yè)務(wù)員?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,點O為直線AB上一點,過點O作射線OC,使,將一塊透明的三角尺的直角頂點放在點O處,邊OM在射線OB上,邊ON在直線AB的下方.

(1)將圖1中的三角尺繞點O逆時針旋轉(zhuǎn)至如圖2所示的位置,使邊OM的內(nèi)部,且恰好平分,求的度數(shù).

(2)將圖1中的三角尺繞點O按每秒的速度逆時針旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中,第t秒時,直線ON恰好平分銳角,則t的值為________(直接寫出結(jié)果).

(3)將圖1中的三角尺繞點O逆時針旋轉(zhuǎn)至如圖3所示的位置,使ON的內(nèi)部,請?zhí)骄?/span>之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(﹣3,1)、Bm,3)兩點,

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)寫出使一次函數(shù)的值大于反比例函數(shù)的x的取值范圍;

3)連接AO、BO,求△ABO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為慶祝建軍90周年,某校計劃在五月份舉行“唱響軍歌”歌詠比賽,要確定一首喜歡人數(shù)最多的歌曲為每班必唱歌曲.為此提供代號為A,BC,D四首備選曲目讓學(xué)生選擇,經(jīng)過抽樣調(diào)查,并將采集的數(shù)據(jù)繪制如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖①,圖②所提供的信息,

解答下列問題:

(1)本次抽樣調(diào)查中,選擇曲目代號為A的學(xué)生占抽樣總數(shù)的百分比為  

(2)請將圖②補充完整;

(3)若該校共有1260名學(xué)生,根據(jù)抽樣調(diào)查的結(jié)果估計全校共有多少學(xué)生選擇喜歡人數(shù)最多的歌曲?(要有解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.

(1)觀察猜想

如圖1,當(dāng)點D在線段BC上時,

①BC與CF的位置關(guān)系為:   

②BC,CD,CF之間的數(shù)量關(guān)系為:   ;(將結(jié)論直接寫在橫線上)

(2)數(shù)學(xué)思考

如圖2,當(dāng)點D在線段CB的延長線上時,結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.

(3)拓展延伸

如圖3,當(dāng)點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2,CD=BC,請求出GE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線相交于點,.

1)求的度數(shù);

2)若的平分線,那么的平分線嗎?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組:, 并把解集在數(shù)軸上表示出來.

【答案】-3<x1

【解析】分析:分別解不等式,在數(shù)軸上表示出解集,找出解集的公共部分即可.

詳解:,

解不等式①得:,

解不等式②得:

∴原不等式組的解集為-3<x≤1

解集在數(shù)軸上表示為:  

點睛:考查解一元一次不等式組,比較容易,分別解不等式,找出解集的公共部分即可.

型】解答
結(jié)束】
17

【題目】下圖是由邊長為1個單位長度的小正方形組成的網(wǎng)格,線段AB的端點在格點上.

(1)請建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系xOy,使得A點的坐標(biāo)為(-3,-1),在此坐標(biāo)系下,B點的坐標(biāo)為________________;

(2)將線段BA繞點B逆時針旋轉(zhuǎn)90°得線段BC,畫出BC;在第(1)題的坐標(biāo)系下,C點的坐標(biāo)為__________________;

(3)在第(1)題的坐標(biāo)系下,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過O、B、C三點,則此函數(shù)圖象的對稱軸方程是________________.

查看答案和解析>>

同步練習(xí)冊答案