【題目】如圖(1)所示,A,E,F,C在一條直線上,AE=CF,過E,F分別作DE⊥AC,BF⊥AC,若AB=CD,求證EG=FG.(提示:先證△ABF≌△CDE,得BF=DE,再證△BFG≌△DEG);若將△DEC的邊EC沿AC方向移動,變?yōu)閳D(2)時,其余條件不變,上述結(jié)論是否成立?請說明理由.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,已知AD∥BC,AB=CD,延長線段CB到E,使BE=AD,連接AE、AC.
【1】求證:△ABE≌△CDA;
【2】若∠DAC=40°,求∠EAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列一段話,并解決后面的問題 .觀察下面一例數(shù):
1,2,4,8,……
我們發(fā)現(xiàn),這一列數(shù)從第2項起,每一項與它前一項的比都等于2 .
一般地,如果一列數(shù)從第2項起,每一項與它前一項的比都等于同一個常數(shù),這一列數(shù)就叫做等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比 .
(1)等比數(shù)列5,-15,45,……的第4項是 ;
(2)如果一列數(shù),,,,……是等比數(shù)列,且公比為q,那么根據(jù)上述的規(guī)定,有
,,,……
所以,
,
,
……
.(用與q的代數(shù)式表示)
(3)一個等比數(shù)列的第2項是10,第3項是20,求它的第1項與第4項 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在四邊形ABCD中,∠A=90°.若AB=4cm,AD=3cm,CD=12cm,BC=13cm,
(1)請說明BD⊥CD;
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師為了了解學(xué)生暑期在家的閱讀情況,隨機調(diào)查了20名學(xué)生某一天的閱讀小時數(shù),具體情況統(tǒng)計如下:
閱讀時間 (小時) | 2 | 2.5 | 3 | 3.5 | 4 |
學(xué)生人數(shù)(名) | 1 | 2 | 8 | 6 | 3 |
則關(guān)于這20名學(xué)生閱讀小時數(shù)的說法正確的是( )
A. 眾數(shù)是8 B. 中位數(shù)是3 C. 平均數(shù)是3 D. 方差是0.34
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家住房結(jié)構(gòu)如圖所示,圖中標(biāo)了有關(guān)尺寸(墻體厚度忽略不計,單位:米)房屋的主人計劃把臥室以外的地面都鋪上地磚.
(1)如果他選用地磚的價格是 a 元/平方米,則買地磚至少需用多少元(圖中標(biāo)了有關(guān)尺寸(墻體厚度忽略不計,單位:米)
(2)如果房屋的高度為 h 米,現(xiàn)需要在客廳和臥室的墻上貼壁紙,至少需要多少平方米的壁紙?(計算時不扣除門、窗所占的面積,結(jié)果用代數(shù)式表示)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC與△DEC是兩個大小不同的等腰直角三角形.
(1)如圖①所示,連接AE,DB,試判斷線段AE和DB的數(shù)量和位置關(guān)系,并說明理由;
(2)如圖②所示,連接DB,將線段DB繞D點順時針旋轉(zhuǎn)90°到DF,連接AF,試判斷線段DE和AF的數(shù)量和位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是正方形內(nèi)一點,以點為旋轉(zhuǎn)中心,將按順時針方向旋轉(zhuǎn)使點與點重合,這時點旋轉(zhuǎn)到點.
設(shè)的長為,的長為,在圖中用陰影標(biāo)出旋轉(zhuǎn)到的過程中,邊所掃過區(qū)域的面積,并用含、的式子表示它________;
若,,,連接,試猜想的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,N,P,G分別在邊AB,BC,CD,DA上,點M,F(xiàn),Q都在對角線BD上,且四邊形MNPQ和AEFG均為正方形,則的值等于_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com