精英家教網 > 初中數學 > 題目詳情

【題目】如圖,菱形的兩個頂點坐標為,,若將菱形繞點以每秒的速度逆時針旋轉,則第秒時,菱形兩對角線交點的坐標為__________

【答案】-0

【解析】

先計算得到點D的坐標,根據旋轉的性質依次求出點D旋轉后的點坐標,得到變化的規(guī)律即可得到答案

∵菱形的兩個頂點坐標為,,

∴對角線的交點D的坐標是(2,2),

,

將菱形繞點以每秒的速度逆時針旋轉,

旋轉1次后坐標是(0, ),

旋轉2次后坐標是(-2,2),

旋轉3次后坐標是(-,0),

旋轉4次后坐標是(-2,-2),

旋轉5次后坐標是(0,-),

旋轉6次后坐標是(2,-2),

旋轉7次后坐標是(,0),

旋轉8次后坐標是(2,2

旋轉9次后坐標是(0,,

由此得到點D旋轉后的坐標是8次一個循環(huán),

,

∴第秒時,菱形兩對角線交點的坐標為(-0

故答案為:(-,0

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.

(1)求拋物線的解析式;

(2)當點P運動到什么位置時,△PAB的面積有最大值?

(3)過點Px軸的垂線,交線段AB于點D,再過點PPEx軸交拋物線于點E,連結DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC的兩條角平分線BD、CE交于O,且A=60°,則下列結論中不正確的是( )

A.BOC=120° B.BC=BE+CD C.OD=OE D.OB=OC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知在△ABC中,ABAC,AB的垂直平分線交線段ACD,若△ABC和△DBC的周長分別是60 cm38 cm,則△ABC的腰長和底邊BC的長分別是( )

A. 22cm16cmB. 16cm22cm

C. 20cm16cmD. 24cm12cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們約定:對角線互相垂直的凸四邊形叫做“正垂形”.

(1)①在“平行四邊形,矩形,菱形,正方形”中,一定是“正垂形”的有   ;

②在凸四邊形ABCD中,AB=AD且CB≠CD,則該四邊形   “正垂形”.(填“是”或“不是”)

(2)如圖1,A,B,C,D是半徑為1的⊙O上按逆時針方向排列的四個動點,AC與BD交于點E,∠ACB﹣∠CDB=∠ACD﹣∠CBD,當≤OE≤時,求AC2+BD2的取值范圍;

(3)如圖2,在平面直角坐標系xOy中,拋物線y=ax2+bx+c(a,b,c為常數,a>0,c<0)與x軸交于A,C兩點(點A在點C的左側),B是拋物線與y軸的交點,點D的坐標為(0,﹣ac),記“正垂形”ABCD的面積為S,記△AOB,△COD,△AOD,△BOC的面積分別為S1,S2,S3,S4試直接寫出滿足下列三個條件的拋物線的解析式;

; ②; ③“正垂形”ABCD的周長為12

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCECD均為等邊三角形,B、C、D三點在一直線上,AD、BE相交于點F,DF=3,AF=4,則線段FE的長為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形中,,,,點從點出發(fā),以每秒單位的速度向點運動,點從點同時出發(fā),以每秒單位的速度向點運動,其中一個動點到達終點時,另一個動點也隨之停止運動,設運動時間為秒.

1)當時,若以點,和點,中的兩個點為頂點的四邊形為平行四邊形,且線段為平行四邊形的一邊,求的值.

2)若以點,和點,,中的兩個點為頂點的四邊形為菱形,且線段為菱形的一條對角線,請直接寫出的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖,以△ABC的一邊BC為直徑的O分別交AB、ACDE,下面判斷中:當△ABC為等邊三角形時,△ODE是等邊三角形;當△ODE是等邊三角形,△ABC為等邊三角形;當∠A=45°時,△ODE是直角三角形;當△ODE是直角三角形時,∠A=45°.正確的結論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場銷售某種品牌的手機,每部進貨價為2500.市場調研表明:當銷售價為2900元時,平均每天能售出8部;而當銷售價每降低50元時,平均每天就能多售出4.

(1)當售價為2800元時,這種手機平均每天的銷售利潤達到多少元?

(2)若設每部手機降低x,每天的銷售利潤為y,試寫出yx之間的函數關系式.

(3)商場要想獲得最大利潤,每部手機的售價應訂為為多少元?此時的最大利潤是多少元?

查看答案和解析>>

同步練習冊答案