【題目】4月的某天小欣在“A超市”買了“雀巢巧克力”和“趣多多小餅干”共10包,已知“雀巢巧克力”每包22元,“趣多多小餅干”每包2元,總共花費(fèi)了80元.
(1)請求出小欣在這次采購中,“雀巢巧克力”和“趣多多小餅干”各買了多少包?
(2)“五一”期間,小欣發(fā)現(xiàn),A、B兩超市以同樣的價(jià)格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案:在A超市累計(jì)購物超過50元后,超過50元的部分打九折;在B超市累計(jì)購物超過100元后,超過100元的部分打八折. ①請問“五一”期間,若小欣購物金額超過100元,去哪家超市購物更劃算?
②“五一”期間,小欣又到“B超市”購買了一些“雀巢巧克力”,請問她至少購買多少包時(shí),平均每包價(jià)格不超過20元?

【答案】
(1)解:設(shè)“雀巢巧克力”和“趣多多小餅干”各買了x包和y包,根據(jù)題意得:

,解得: ,

答:雀巢巧克力”和“趣多多小餅干”各買了3包和7包


(2)解:①設(shè)小欣購物金額為m元,

當(dāng)m>100時(shí),若在A超市購物花費(fèi)少,則50+0.9(m﹣50)<100+0.8(m﹣100),

解得:m<150,

若在B超市購物花費(fèi)少,則50+0.9(m﹣50)>100+0.8(m﹣100),

解得:m>150,

如果購物在100元至150元之間,則去A超市更劃算;

如果購物等于150元時(shí),去任意兩家購物都一樣;

如果購物超過150元,則去B超市更劃算;

②設(shè)小欣在B超市購買了n包“雀巢巧克力”,平均每包價(jià)格不超過20元,

根據(jù)題意得:100+(22n﹣100)×0.8≤20n,

解得:n≥8 ,

據(jù)題意x取整數(shù),可得x的取值為9,

所以小欣在B超市至少購買9包“雀巢巧克力”,平均每包價(jià)格不超過20元


【解析】(1)設(shè)“雀巢巧克力”和“趣多多小餅干”各買了x包和y包,根據(jù)買了“雀巢巧克力”和“趣多多小餅干”共10包,“雀巢巧克力”每包22元,“趣多多小餅干”每包2元,總共花費(fèi)了80元,列出方程組,求解即可;(2)①設(shè)小欣購物金額為m元,當(dāng)m>100時(shí),若在A超市購物花費(fèi)少,求出購物金額,若在B超市購物花費(fèi)少,也求出購物金額,從而得出去哪家超市購物更劃算;②設(shè)小欣在B超市購買了n包“雀巢巧克力”,平均每包價(jià)格不超過20元,根據(jù)在B超市累計(jì)購物超過100元后,超過100元的部分打八折,列出不等式,再進(jìn)行求解,即可得出答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)了統(tǒng)計(jì)知識后,小剛就本班同學(xué)上學(xué)“喜歡的出行方式”進(jìn)行了一次調(diào)查.圖(1)和圖(2)是他根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息解答以下問題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算出“騎車”部分所對應(yīng)的圓心角的度數(shù);
(2)如果全年級共600名同學(xué),請估算全年級步行上學(xué)的學(xué)生人數(shù);
(3)若由3名“喜歡乘車”的學(xué)生,1名“喜歡步行”的學(xué)生,1名“喜歡騎車”的學(xué)生組隊(duì)參加一項(xiàng)活動(dòng),欲從中選出2人擔(dān)任組長(不分正副),列出所有可能的情況,并求出2人都是“喜歡乘車”的學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知頂點(diǎn)為A(2,﹣1)的拋物線經(jīng)過點(diǎn)B(0,3),與x軸交于C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè));
(1)求這條拋物線的表達(dá)式;
(2)聯(lián)結(jié)AB、BD、DA,求△ABD的面積;
(3)點(diǎn)P在x軸正半軸上,如果∠APB=45°,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,∠A=30°,BC=6.
(1)實(shí)踐操作:尺規(guī)作圖,不寫作法,保留作圖痕跡. ①作∠ABC的角平分線交AC于點(diǎn)D.
②作線段BD的垂直平分線,交AB于點(diǎn)E,交BC于點(diǎn)F,連接DE、DF.
(2)推理計(jì)算:四邊形BFDE的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖1是由5個(gè)完全相同的正方體堆成的幾何體,現(xiàn)將標(biāo)有E的正方體平移至如圖2所示的位置,下列說法中正確的是(
A.左、右兩個(gè)幾何體的主視圖相同
B.左、右兩個(gè)幾何體的左視圖相同
C.左、右兩個(gè)幾何體的俯視圖不相同
D.左、右兩個(gè)幾何體的三視圖不相同

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用若干個(gè)全等的正五邊形可以拼成一個(gè)環(huán)狀,圖中所示的是前3個(gè)正五邊形的拼接情況,要完全拼成一個(gè)圓環(huán)還需要的正五邊形個(gè)數(shù)是(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,AB=AC,tan∠B=2,BC=4,D為BC邊的中點(diǎn),點(diǎn)E在BC邊的延長線上,且CE=BC,連接AE,F(xiàn)為線段AE的中點(diǎn)
(1)求線段CF的長;
(2)求∠CAE的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線x= 的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).

(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當(dāng)平行四邊形OEAF的面積為24時(shí),請判斷平行四邊形OEAF是否為菱形?
②是否存在點(diǎn)E,使平行四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC與BD交于點(diǎn)O,過點(diǎn)O作BD的垂線分別交AD,BC于E,F(xiàn)兩點(diǎn).若AC=2 ,∠AEO=120°,則FC的長度為(
A.1
B.2
C.
D.

查看答案和解析>>

同步練習(xí)冊答案