【題目】如圖,在RtABC中,C=90°,AC=4,BC=3,O是ABC的內心,以O為圓心,r為半徑的圓與線段AB有交點,則r的取值范圍是( )

A.r≥1 B.1≤r≤ C.1≤r≤ D.1≤r≤4

【答案】C

【解析】

試題分析:作ODAB于D,OEBC于E,OFAC于F,根據(jù)題意得出四邊形OECF是正方形,得出OF=CF,由勾股定理得出AB==5,由內心的性質得出CF=OF=1,AF=AC﹣CF=3,由勾股定理求出OA,由直線與圓的位置關系,即可得出結果.

解:作ODAB于D,OEBC于E,OFAC于F,連接OA、OB,如圖所示

則四邊形OECF是正方形,

OF=CF=OE=CE,

∵∠C=90°,AC=4,BC=3,

AB==5,

OABC的內心,

CE=CF=OF=OE=(AC+BC﹣AB)=1,

AF=AC﹣CF=3,BE=BC﹣CE=2,

OA===,OB===,

當r=1時,以O為圓心,r為半徑的圓與線段AB有唯一交點;

當1<r≤時,以O為圓心,r為半徑的圓與線段AB有兩個交點;

<r≤時,以O為圓心,r為半徑的圓與線段AB有1個交點;

以O為圓心,r為半徑的圓與線段AB有交點,則r的取值范圍是1≤r≤;

故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線y=﹣x2+bx+c與x軸交于點A,B,與y軸交于點C,直線y=x+4經(jīng)過A,C兩點.

(1)求拋物線的解析式;

(2)在AC上方的拋物線上有一動點P.

①如圖1,當點P運動到某位置時,以AP,AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上,求出此時點P的坐標;

②如圖2,過點O,P的直線y=kx交AC于點E,若PE:OE=3:8,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了開闊學生的視野,積極組織學生參加課外讀書活動.“放飛夢想”讀書小組協(xié)助老師隨機抽取本校的部分學生,調查他們最喜愛的圖書類別(圖書分為文學類、藝體類、科普類、其他等四類),并將調查結果繪制成如下兩幅不完整的統(tǒng)計圖,請你結合圖中的信息解答下列問題:

(1)求被調查的學生人數(shù);

(2)補全條形統(tǒng)計圖;

(3)已知該校有1200名學生,估計全校最喜愛文學類圖書的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若(x+y)2=9,(x﹣y)2=5,則xy的值為( 。

A. ﹣1; B. 1 ; C. ﹣4; D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一枚運載火箭從地面L處發(fā)射,當火箭到達A點時,從位于距發(fā)射架底部4km處的地面雷達站R(LR=4)測得火箭底部的仰角為43°.1s后,火箭到達B點,此時測得火箭底部的仰角為45.72°.這枚火箭從A到B的平均速度是多少 (結果取小數(shù)點后兩位)?

(參考數(shù)據(jù):sin43°≈0.682,cos43°≈0.731,tan43°≈0.933,

sin45.72°≈0.716,cos45.72°≈0.698,tan45.72°≈1.025)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個正方形的邊長增加3cm,它的面積就增加45cm2,則這個正方形的邊長是___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個多邊形的內角和是外角和的3倍還多180°,那么這個多邊形有多少條邊?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個三角形的三邊為25、x,另一個三角形的三邊為y、2、6,若這兩個三角形全等,則xy

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直角ABC中,∠C=90°,點D,E分別是邊AC,BC上的點,點P是一動點.令∠PDA=1,PEB=2,DPE=α.

(1)若點P在線段AB上,如圖①,且∠α=50°,則∠1+2=      ;

(2)若點P在斜邊AB上運動,如圖②,則∠α、1、2之間的關系為      ;

(3)如圖③,若點P在斜邊BA的延長線上運動(CE<CD),請直接寫出∠α、1、2之間的關系:      

(4)若點P運動到ABC形外(只需研究圖④情形),則∠α、1、2之間有何關系?并說明理由.

查看答案和解析>>

同步練習冊答案