如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點,PD切⊙O于點D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.(1)求證:PC是⊙O的切線;(2)若AC=PD,連結(jié)BC.求證:AB=2BC
(1)連結(jié)OC、OD
在△POC和△POD中,∵OC=OD,PC=PD,PO=PO, ∴△POC≌△POD
∴∠ODP=∠OCP.
∵PD是⊙O的切線,∴∠ODP=90°,∴∠OCP=90°.
∴PC是⊙O的切線.
(2)∵PC、PD是⊙O的兩條切線,
∴PC=PD,
又∵AC=PD
∴AC=PC.
∴∠A=∠CPA
設(shè)∠A=x,則∠COP=2x,∠CPA=x.在Rt△POC中,2x+x+90°=180°,
∴x=30°.即∠A=30°.
又∵△ABC是Rt△,
∴AB=2BC
【解析】(1)要證PC是⊙O的切線,只要連接OC,OD,通過證明△OCP≌△ODP得出∠OCP=90°即可.
(2)利用直角三角形POC內(nèi)角和為180°算出∠CPA的度數(shù),從而得出∠A的度數(shù),再根據(jù)Rt△ABC的邊角關(guān)系得出結(jié)論。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆山東省臨沂市莒南縣九年級上學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點,PD切⊙O于點D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.(1)求證:PC是⊙O的切線;(2)若AC=PD,連結(jié)BC.求證:AB="2BC"
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年4月中考數(shù)學(xué)模擬試卷(58)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com