【題目】在平面直角坐標(biāo)系中,直線y=kx+4(k≠0)交x軸于點(diǎn)A(8,0),交y軸于點(diǎn)B,
(1)k的值是 ;
(2)點(diǎn)C是直線AB上的一個(gè)動(dòng)點(diǎn),點(diǎn)D和點(diǎn)E分別在x軸和y軸上.
①如圖,點(diǎn)E為線段OB的中點(diǎn),且四邊形OCED是平行四邊形時(shí),求OCED的周長(zhǎng);
②當(dāng)CE平行于x軸,CD平行于y軸時(shí),連接DE,若△CDE的面積為,請(qǐng)直接寫出點(diǎn)C的坐標(biāo).
【答案】(1);(2)①8+4;②點(diǎn)C的坐標(biāo)為(﹣3,)或(11,).
【解析】
(1)根據(jù)點(diǎn)A的坐標(biāo),利用待定系數(shù)法可求出k值;
(2)①利用一次函數(shù)圖像上點(diǎn)的坐標(biāo)特征可得出點(diǎn)B的坐標(biāo),由平行四邊形的性質(zhì)結(jié)合點(diǎn)E為OB的中點(diǎn)可得出CE是△ABO的中位線,結(jié)合點(diǎn)A的坐標(biāo)可得出CE的長(zhǎng),在Rt△DOE中,利用勾股定理可求出DE的長(zhǎng),再利用平行四邊形的周長(zhǎng)公式即可求出的周長(zhǎng);
②設(shè)點(diǎn)C的坐標(biāo)為(x,x +4),則CE=|x|,CD=|x+4|,利用三角形的面積公式結(jié)合△CDE的面積為,可得出關(guān)于x的方程,解之即可得出結(jié)論.
解:(1)將A(8,0)代入y=kx+4,得:0=8k+4,
解得:k=.故答案為:.
(2)①由(1)可知直線AB的解析式為y=x+4.
當(dāng)x=0時(shí),y=x+4=4,∴點(diǎn)B的坐標(biāo)為(0,4),
∴OB=4.
∵點(diǎn)E為OB的中點(diǎn),∴BE=OE=OB=2.
∵點(diǎn)A的坐標(biāo)為(8,0),∴OA=8.
∵四邊形OCED是平行四邊形,
∴CE∥DA,
∴,∴BC=AC,
∴CE是△ABO的中位線,∴CE=OA=4.
∵四邊形OCED是平行四邊形,
∴OD=CE=4,OC=DE.
在Rt△DOE中,∠DOE=90°,OD=4,OE=2,
∴DE=,
∴=2(OD+DE)=2(4+2)=8+4.
②如圖,設(shè)點(diǎn)C的坐標(biāo)為(x,x +4),則CE=|x|,CD=|x+4|,
∴S△CDE=CDCE=|﹣x2+2x|=,
∴x2+8x+33=0或x2+8x﹣33=0.
方程x2+8x+33=0無解;
解方程x2+8x﹣33=0,
解得:x1=﹣3,x2=11,
∴點(diǎn)C的坐標(biāo)為(﹣3,)或(11,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“童舒”童裝商場(chǎng)某種童裝進(jìn)價(jià)為每件60元,當(dāng)售價(jià)為每件100元時(shí),每天可賣出120件:童裝的售價(jià)每上漲1元,則每天少賣2件.為了讓利于顧客,商場(chǎng)規(guī)定銷售這種重裝時(shí)利潤(rùn)率不能超過90%,則當(dāng)每件童裝的售價(jià)定為多少元時(shí),商場(chǎng)銷售此種童裝時(shí)每天可獲得最大利潤(rùn)?每天的最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:點(diǎn)A、B、C、D為⊙O上的四等分點(diǎn),動(dòng)點(diǎn)P從圓心O出發(fā),沿O﹣C﹣D﹣O的路線做勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,∠APB的度數(shù)為y.則下列圖象中表示y與t之間函數(shù)關(guān)系最恰當(dāng)?shù)氖牵ā 。?/span>
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AE⊥BD于E,若∠OAE=24°,則∠BAE的度數(shù)是( )
A. 24° B. 33° C. 42° D. 43°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“每天鍛煉一小時(shí),健康生活一輩子”.為了選拔“陽光大課間”領(lǐng)操員,學(xué)校組織初中三個(gè)年級(jí)推選出來的15名領(lǐng)操員進(jìn)行比賽,成績(jī)?nèi)缦卤恚?/span>
成績(jī)/分 | 7 | 8 | 9 | 10 |
人數(shù)/人 | 2 | 5 | 4 | 4 |
(1)這組數(shù)據(jù)的眾數(shù)是多少,中位數(shù)是多少.
(2)已知獲得2018年四川省南充市的選手中,七、八、九年級(jí)分別有1人、2人、1人,學(xué)校準(zhǔn)備從中隨機(jī)抽取兩人領(lǐng)操,求恰好抽到八年級(jí)兩名領(lǐng)操員的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(8,0),sin∠ABO=,拋物線經(jīng)過點(diǎn)O、A,且頂點(diǎn)在△AOB的外接圓上,則此拋物線的表達(dá)式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 和直線y=(k+1)x+(k+1)2.
(1)求證:無論k取何值,拋物線總與x軸有兩個(gè)不同的交點(diǎn);
(2)如果拋物線與x軸的交點(diǎn)A,B在原點(diǎn)的右邊,直線與x軸的交點(diǎn)C在原點(diǎn)的左邊,又拋物線、直線分別交y軸于點(diǎn)D,E,直線AD交直線CE于點(diǎn)G(如圖),且CAGE=CGAB,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣2(k+1)x+k2=0有兩個(gè)實(shí)數(shù)根x1、x2.
(1)求k的取值范圍;
(2)若x1+x2=3x1x2﹣6,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某種汽車剎車后行駛的距離s(單位:m)關(guān)于行駛的時(shí)間t(單位:s)的函數(shù)關(guān)系式為s=15t-at2,且t=1時(shí),s=9.
(1)求s與t的函數(shù)關(guān)系式;
(2)該汽車剎車后到停下來前進(jìn)了多遠(yuǎn)?
(3)該汽車剎車后前進(jìn)6m時(shí)行駛了多長(zhǎng)時(shí)間?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com