【題目】歐拉(Euler,1707年~1783年)為世界著名的數(shù)學家、自然科學家,他在數(shù)學、物理、建筑、航海等領域都做出了杰出的貢獻.他對多面體做過研究,發(fā)現(xiàn)多面體的頂點數(shù)(Vertex)、棱數(shù)E(Edge)、面數(shù)F(Flat surface)之間存在一定的數(shù)量關系,給出了著名的歐拉公式.
(1)觀察下列多面體,并把下表補充完整:
名稱 | 三棱錐 | 三棱柱 | 正方體 | 正八面體 |
圖形 | ||||
頂點數(shù)V | 4 | 6 | 8 | |
棱數(shù)E | 6 | 12 | ||
面數(shù)F | 4 | 5 | 8 |
(2)分析表中的數(shù)據(jù),你能發(fā)現(xiàn)V、E、F之間有什么關系嗎?請寫出關系式:____________________________.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y2與x軸相交于A、B兩點(點A在點B的右側),與y軸相交于點C,對稱軸與x軸相交于點H,與AC相交于點T.
(1)點P是線段AC上方拋物線上一點,過點P作PQ∥AC交拋物線的對稱軸于點Q,當△AQH面積最大時,點M、N在y軸上(點M在點N的上方),MN,點G在直線AC上,求PM+NGGA的最小值.
(2)點E為BC中點,EF⊥x軸于F,連接EH,將△EFH沿EH翻折得△EF'H,如圖所示2,再將△EF'H沿直線BC平移,記平移中的△EF'H為△E'F″H',在平移過程中,直線E'H'與x軸交于點R,則是否存在這樣的點R,使得△RF'H'為等腰三角形?若存在,求出R點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(1,1)在拋物線y=x2+(2m+1)x﹣n﹣1上
(1)求m、n的關系式;
(2)若該拋物線的頂點在x軸上,求出它的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線,,,…,(n為正整數(shù)),點A(0,1).
(1)如圖1,過點A作y軸垂線,分別交拋物線,,,…,于點,,,…,(和點A不重合).
①求的長.
②求的長.
(2)如圖2,點P從點A出發(fā),沿y軸向上運動,過點P作y軸的垂線,交拋物線于點,,交拋物線于點,,交拋物線于點,,……,交拋物線于點,(在第二象限).
①求的值.
②求的值.
(3)過x軸上的點Q(原點除外),作x軸的垂線分別交拋物線,,,…,于點,,,…,,是否存在線段(i,j為正整數(shù)),使,若存在,求出i+j的最小值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,DE⊥AD,交AB于點E,AE為⊙O的直徑.
(1)判斷BC與⊙O的位置關系,并證明你的結論;
(2)求證:△ABD∽△DBE;
(3)若cosB=,AE=4,求CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線交x軸于,兩點,與y軸交于點C,AC,BC.M為線段OB上的一個動點,過點M作軸,交拋物線于點P,交BC于點Q.
(1)求拋物線的表達式;
(2)過點P作,垂足為點N.設M點的坐標為,請用含m的代數(shù)式表示線段PN的長,并求出當m為何值時PN有最大值,最大值是多少?
(3)試探究點M在運動過程中,是否存在這樣的點Q,使得以A,C,Q為頂點的三角形是等腰三角形.若存在,請求出此時點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點A(﹣1,0)、B(3,0)、C(0,3)三點.
(1)求拋物線的解析式.
(2)點M是線段BC上的點(不與B,C重合),過M作MN∥y軸交拋物線于N,若點M的橫坐標為m,請用m的代數(shù)式表示MN的長.
(3)在(2)的條件下,連接NB、NC,是否存在m,使△BNC的面積最大?若存在,求m的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如果將△ABC與△DEF各分割成兩個三角形,且△ABC所分的兩個三角形與△DEF所分的兩個三角形分別對應相似,那么稱△ABC與△DEF互為“近似三角形”,將每條分割線稱為“近似分割線”.
(1)如圖1,在Rt△ABC和Rt△DEF中,∠C=∠F=90°,∠A=30°,∠D=40°,請判斷這兩個三角形是否互為“近似三角形”?如果是,請直接在圖1中畫出一組分割線,并注明分割后所得兩個小三角形銳角的度數(shù);若不是,請說明理由.
(2)判斷下列命題是真命題還是假命題,若是真命題,請在括號內(nèi)打“√”;若是假命題,請在括號內(nèi)打“×”.
①任意兩個直角三角形都是互為“近似三角形” ;
②兩個“近似三角形”只有唯一的“近似分割線” ;
③如果兩個三角形中有一個角相等,那么這兩個三角形一定是互為“近似三角形” .
(3)如圖2,已知△ABC與△DEF中,∠A=∠D=15°,∠B=45°,∠E=60°,且BC=EF=,判斷這兩個三角形是否互為“近似三角形”?如果是,請在圖2中畫出不同位置的“近似分割線”,并直接分別寫出“近似分割線”的和;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形EFGH的頂點E,G分別在菱形ABCD的邊AD,BC上,頂點F,H在菱形ABCD的對角線BD上.
(1)求證:BG=DE;
(2)若E為AD中點,FH=2,求菱形ABCD的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com