【題目】如圖,某小區(qū)有一塊長為30m,寬為24m的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480m2,兩塊綠地之間及周邊有寬度相等的人行通道,設人行通道的寬度為xm,則可列方程為_____.
科目:初中數(shù)學 來源: 題型:
【題目】今年,我國海關(guān)總署嚴厲打擊“洋垃圾”違法行動,堅決把“洋垃圾”拒于國門之外.如圖,某天我國一艘海監(jiān)船巡航到A港口正西方的B處時,發(fā)現(xiàn)在B的北偏東60°方向,相距150海里處的C點有一可疑船只正沿CA方向行駛,C點在A港口的北偏東30°方向上,海監(jiān)船向A港口發(fā)出指令,執(zhí)法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時D點與B點的距離為75海里.
(1)求B點到直線CA的距離;
(2)執(zhí)法船從A到D航行了多少海里?(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a,b,c滿足a+c=b,4a+c=-2b,拋物線y=ax+bx+c(a>0)過點A(-,y1),B(,y2,)C(3,y3),則y1,y2,y3的大小關(guān)系為( )
A. y2<y1<y3B. y3<y1<y2C. y2<y3<y1D. y1<y2<y3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,點O在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線與AC的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)求證:ABCP=BDCD;
(3)當AB=5cm,AC=12cm時,求線段PC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,二次函數(shù)的圖象與x軸交于A、B兩點,其中A點坐標為,點,另拋物線經(jīng)過點,M為它的頂點.
求拋物線的解析式;
求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某氣球內(nèi)充滿了一定質(zhì)量的氣體,當溫度不變時,氣球內(nèi)氣體的氣壓P(單位:千帕)隨氣體體積V(單位:立方米)的變化而變化,P隨V的變化情況如下表所示.
P | 1.5 | 2 | 2.5 | 3 | 4 | … |
V | 64 | 48 | 38.4 | 32 | 24 | … |
(1)寫出符合表格數(shù)據(jù)的P關(guān)于V的函數(shù)表達式 ;
(2)當氣球的體積為20立方米時,氣球內(nèi)氣體的氣壓P為多少千帕?
(3)當氣球內(nèi)的氣壓大于144千帕時,氣球?qū)⒈,依照?/span>1)中的函數(shù)表達式,基于安全考慮,氣球的體積至少為多少立方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市智慧閱讀活動正如火如茶地進行.某班學習委員為了解11月份全班同學課外閱讀的情況,調(diào)查了全班同學11月份讀書的冊數(shù),并根據(jù)調(diào)查結(jié)果繪制了如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖:
(1)扇形統(tǒng)計圖中“3冊”部分所對應的圓心角的度數(shù)是 ,并把條形統(tǒng)計圖補充完整;
(2)該班的學習委員11月份的讀書冊數(shù)為4冊,若該班的班主任從11月份讀書4冊的學生中隨機抽取兩名同學參加學校舉行的知識競賽,請用列表法或畫樹狀圖求恰好有一名同學是學習委員的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“春節(jié)”前夕,某超市購進某種品牌禮品,每盒進價是40元,超市規(guī)定每盒售價不得少于45元,設每盒售價為x(元),每天的銷售量y(盒),y與x成一次的函數(shù)關(guān)系,經(jīng)過市場調(diào)查獲得部分數(shù)據(jù)如下表:
每盒售價為x(元) | 45 | 50 | 55 | … |
每天的銷售量y(盒) | 450 | 400 | 350 | … |
(1)試求出y與x之間的函數(shù)關(guān)系式;
(2)當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?
(3)物價部門規(guī)定:這種禮品每盒售價不得高于60元,如果超市想要每天獲得不低于5250元的利潤,那么超市每天至少銷售這種禮品多少盒?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出:
有n個環(huán)環(huán)相扣的圓環(huán)形成一串線型鏈條,當只斷開其中的k(k<n)個環(huán),要求第一次取走一個環(huán),以后每次都只能比前一次多得一個環(huán),則最多能得到的環(huán)數(shù)n是多少呢?
問題探究:
為了找出n與k之間的關(guān)系,我們運用一般問題特殊化的方法,從特殊到一般,歸納出解決問題的方法.
探究一:k=1,即斷開鏈條其中的1個環(huán),最多能得到幾個環(huán)呢?
當n=1,2,3時,斷開任何一個環(huán),都能滿足要求,分次取走;
當n=4時,斷開第二個環(huán),如圖①,第一次取走1環(huán);第二次退回1環(huán)換取2環(huán),得2個環(huán);第三次再取回1環(huán),得3個環(huán);第四次再取另1環(huán),得4個環(huán),按要求分4次取走.
當n=5,6,7時,如圖②,圖③,圖④方式斷開,可以用類似上面的方法,按要求分5,6,7次取走.
當n=8時,如圖⑤,無論斷開哪個環(huán),都不可能按要求分次取走.
所以,當斷開1個環(huán)時,從得到更多環(huán)數(shù)的角度考慮,把鏈條分成3部分,分別是1環(huán)、2環(huán)和4環(huán),最多能得到7個環(huán).
即當k=1時,最多能得到的環(huán)數(shù)n=1+2+4=1+2×3=1+2×(22-1)=7.
探究二:k=2,即斷開鏈條其中的2個環(huán),最多能得到幾個環(huán)呢?
從得到更多環(huán)數(shù)的角度考慮,按圖⑥方式斷開,把鏈條分成5部分,按照類似探究一的方法,按要求分1,2,…23次取走.
所以,當斷開2個環(huán)時,把鏈條分成5部分,分別是1環(huán)、1環(huán)、3環(huán)、6環(huán)、12環(huán),最多能得到23個環(huán).
即當k=2時,最多能得到的環(huán)數(shù)n=1+1+3+6+12=2+3×7=2+3×(23-1)=23.
探究三:k=3,即斷開鏈條其中的3個環(huán),最多能得到幾個環(huán)呢?
從得到更多環(huán)數(shù)的角度考慮,按圖⑦方式斷開,把鏈條分成7部分,按照類似前面探究的方法,按要求分1,2,…63次取走.
所以,當斷開3個環(huán)時,從得到更多環(huán)數(shù)的角度考慮,把鏈條分成7部分,分別是1環(huán)、1環(huán)、1環(huán)、4環(huán)、8環(huán)、16環(huán)、32環(huán),最多能得到63個環(huán).
即當k=3時,最多能得到的環(huán)數(shù)n=1+1+1+4+8+16+32=3+4×15=3+4×(24-1)=63.
探究四:k=4,即斷開鏈條其中的4個環(huán),最多能得到幾個環(huán)呢?
按照類似前面探究的方法,當斷開4個環(huán)時,從得到更多環(huán)數(shù)的角度考慮,把鏈條分成 部分,分別為 ,最多能得到的環(huán)數(shù)n= .請畫出如圖⑥的示意圖.
模型建立:
有n個環(huán)環(huán)相扣的圓環(huán)形成一串線型鏈條,斷開其中的k(k<n)個環(huán),從得到更多環(huán)數(shù)的角度考慮,把鏈條分成 部分,
分別是:1、1、1……1、k+1、 、……、 ,最多能得到的環(huán)數(shù)n = .
實際應用:
一天一位財主對雇工說:“你給我做兩年的工,我每天付給你一個銀環(huán).不過,我用一串環(huán)環(huán)相扣的線型銀鏈付你工錢,但你最多只能斷開銀鏈中的6個環(huán).如果你無法做到每天取走一個環(huán),那么你就得不到這兩年的工錢,如果銀鏈還有剩余,全部歸你!你愿意嗎?”
聰明的你是否可以運用本題的方法通過計算幫助雇工解決這個難題,雇工最多能得到總環(huán)數(shù)為多少環(huán)的銀鏈?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com