【題目】如圖,在等腰中,,點在線段上運動(不與重合),連結(jié),作,交線段于點.
(1)當(dāng)時,= °;點從點向點運動時,逐漸變 (填“大”或“小”);
(2)當(dāng)等于多少時,,請說明理由;
(3)在點的運動過程中,的形狀也在改變,判斷當(dāng)等于多少度時,是等腰三角形.
【答案】(1)35°,;(2)當(dāng)DC=3時,△ABD≌△DCE,理由見解析;(3)當(dāng)∠BDA的度數(shù)為110°或80°時,△ADE的形狀是等腰三角形.
【解析】
(1)根據(jù)三角形內(nèi)角和定理得到∠BAD=35°,點從點向點運動時,∠BAD變大,三角形內(nèi)角和定理即可得到答案;
(2)當(dāng)DC=2時,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,得到∠ADB=∠DEC,根據(jù)AB=DC=2,證明△ABD≌△DCE;
(3)分DA=DE、AE=AD、EA=ED三種情況,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算.
解:(1)∵∠B=40°,∠ADB=105°,
∴∠BAD=180°-∠B-∠ADB=180°-105°-40°=35°,
∵點從點向點運動時,∠BAD變大,且∠BDA=180°-40°-∠BAD
∴逐漸變小
(2)當(dāng)DC=3時,△ABD≌△DCE,
理由:∵AB=AC,
∴∠C=∠B=40°,
∴∠DEC+∠EDC=140°,
又∵∠ADE=40°,
∴∠ADB+∠EDC=140°,
∴∠ADB=∠DEC,
又∵AB=DC=3,
在△ABD和△DCE中,
∴△ABD≌△DCE(AAS);
(3)當(dāng)∠BDA的度數(shù)為110°或80°時,△ADE的形狀是等腰三角形,
當(dāng)DA=DE時,∠DAE=∠DEA=70°,
∴∠BDA=∠DAE+∠C=70°+40°=110°;
當(dāng)AD=AE時,∠AED=∠ADE=40°,
∴∠DAE=100°,
此時,點D與點B重合,不合題意;
當(dāng)EA=ED時,∠EAD=∠ADE=40°,
∴∠AED=100°,
∴EDC=∠AED-∠C=60°,
∴∠BDA=180°-40°-60°=80°
綜上所述,當(dāng)∠BDA的度數(shù)為110°或80°時,△ADE的形狀是等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分別以AB、BC、DC為邊向外作正方形,它們的面積分別為S1、S2、S3.若S2=48,S3=9,則S1的值為( )
A. 18 B. 12 C. 9 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點.
(1)在圖1中以格點為頂點畫一個面積為5的正方形;
(2)在圖2中以格點為頂點畫一個三角形,使三角形三邊長分別為2、、;
(3)如圖3,A、B、C是小正方形的頂點,求∠ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B兩地相距600米,甲、乙兩人同時從A地出發(fā)前往B地,所走路程y(米)與行駛時間x(分)之間的函數(shù)關(guān)系如圖所示,則下列說法中:①甲每分鐘走100米;②兩分鐘后乙每分鐘走50米;③甲比乙提前3分鐘到達(dá)B地;④當(dāng)x=2或6時,甲乙兩人相距100米.正確的有_____(在橫線上填寫正確的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級全體同學(xué)參加了愛心捐款活動,該校隨機(jī)抽查了部分同學(xué)捐款的情況統(tǒng)計如圖:
(1)求出本次抽查的學(xué)生人數(shù),并將條形統(tǒng)計圖補(bǔ)充完整;
(2)捐款金額的眾數(shù)是___________元,中位數(shù)是_____________;
(3)請估計全校八年級1000名學(xué)生,捐款20元的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在中,,,分別是的高線和角平分線.
(1)若,求的度數(shù);
(2)試寫出與有何關(guān)系?(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校計劃在暑假期間對總面積為5400的塑膠操場進(jìn)行改造,安排甲、乙兩個工程隊完成.已知甲隊每天能完成改造的面積是乙隊每天能完成改造的面積的2倍,并且在獨立完成面積為1200區(qū)域的改造時,甲隊比乙隊少用10天.
(1)求甲、乙兩工程隊每天能完成操場改造的面積分別是多少?
(2)為方便管理,學(xué)校每天只允許一個工程隊施工,若學(xué)校每天需付給甲隊的施工費用為0.8萬元,乙隊為0.35萬元,要使這次的改造在暑假50天期間完工,怎樣安排才能使費用最?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是菱形,DF⊥AB于點F,BE⊥CD于點E.
(1)求證:AF=CE;
(2)若DE=2,BE=4,求sin∠DAF的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com