【題目】如圖,在ABCD中,AC的垂直平分線分別交BC、AD于點EF,垂足為O,連接AE、CF

1)求證:四邊形AECF為菱形;

2)若AB5,BC7,則AC 時,四邊形AECF為正方形.

【答案】1)見解析;(234

【解析】

1)先根據(jù)四邊形ABCD為平行四邊形可得ADBC,進而可得∠1∠2,再根據(jù)EF垂直平分AC可得AFCF,AECE,進而可得∠2∠3,再根據(jù)四邊相等的四邊形是菱形作出判定;

2)當∠AEC90°時,四邊形AECF是正方形,設(shè)AEECx,則BE7x,AC,根據(jù)勾股定理列出方程求得x的值,進而得AC的長即可.

1)證明:四邊形ABCD是平行四邊形,

ADBC

∴∠1∠2,

EF垂直平分AC

AFCF,AECE,

AECEEFAC,

∴∠2∠3

∴∠1∠3

AEAF,

AEAFCECF,

四邊形AECF是菱形.

2)解:∵四邊形AECF是菱形,

當∠AEC90°時,四邊形AECF是正方形,

則∠AEB90°,

設(shè)AEECx,則BE7x,AC,

Rt△ABE中,

解得,

AC,

故答案為:34

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=DB,∠1=∠2,請問添加下面哪個條件不能判斷△ABC≌△DBE的是( 。

A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象經(jīng)過點,射線與反比例函數(shù)圖象交于另一點;射線軸交于點,軸,垂足為

1)求的值;

2)求的值及直線的表達式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角板是我們學(xué)習數(shù)學(xué)的好幫手.將一對直角三角板如圖放置,點CFD的延長線上,點BED上,ABCF,∠F=∠ACB90°,∠E45°,∠A60°,AC10,則CD的長度是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過兩點,與軸正半軸交于點

1)求拋物線的解析式;

2為線段上一點,過軸的垂線,交拋物線于點,將線段繞點逆時針旋轉(zhuǎn)任意相同的角到,的位置,使點,的對應(yīng)點都在軸下方,交于點,軸交于點.當時,求點的坐標;

3在拋物線上,在坐標平面內(nèi),當以,,,為頂點的四邊形為矩形時,直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子中裝有三張卡片,分別標有數(shù)字12,3,這些卡片除數(shù)字不同外其余均相同.小明從盒子中隨機抽取一張卡片記下數(shù)字后放回,洗勻后再隨機抽取一張卡片.用畫樹狀圖或列表的方法,求第二次抽取卡片上的數(shù)字小于第一次抽取卡片上的數(shù)字的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的三角形,如圖所示,已知∠A=90° BD=4,CF=6, AO的長是

A.B.C.D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在某次作業(yè)中得到如下結(jié)果:

sin2sin283°≈0.1220.9920.9945,

sin222°sin268°≈0.3720.9321.0018,

sin229°sin261°≈0.4820.8720.9873

sin237°sin253°≈0.6020.8021.0000,

sin245°sin245°1.

據(jù)此,小明猜想:對于任意銳角α,均有sin2αsin2(90°α)1.

(1)α30°時,驗證sin2αsin2(90°α)1是否成立;

(2)小明的猜想是否成立?若成立,請給予證明;若不成立,請舉出一個反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在新冠疫情防控期間,某醫(yī)療器械商業(yè)集團新進了40A型電子體溫測量儀,60B型電子體溫測量儀,計劃調(diào)配給下屬的甲、乙兩個連鎖店銷售,其中70臺給甲連鎖店,30臺給乙連鎖店.兩個連鎖店銷售這兩種測量儀每臺的利潤()如下表:

A

B

甲連鎖店

200

170

乙連鎖店

160

150

設(shè)集團調(diào)配給甲連鎖店A型測量儀,集團賣出這100臺測量儀的總利潤為()

1)求關(guān)于的函數(shù)關(guān)系式,并求出的取值范圍:

2)為了促銷,集團決定僅對甲連鎖店的A型測量儀每臺讓利元銷售,其他的銷售利潤不變,并且讓利后每臺A型測量儀的利潤仍然高于甲連鎖店銷售的每臺B型測量儀的利潤,問該集團應(yīng)該如何設(shè)計調(diào)配方案,使總利潤達到最大?

查看答案和解析>>

同步練習冊答案