【題目】如圖,在⊙O的內(nèi)接四邊形ACDB中,AB為直徑,AC:BC=1:2,點D為的中點,BE⊥CD垂足為E.
(1)求∠BCE的度數(shù);
(2)求證:D為CE的中點;
(3)連接OE交BC于點F,若AB=,求OE的長度.
【答案】(1)45°;(2)證明見解析;(3)
【解析】試題分析: (1)連接AD,由D為弧AB的中點,得到AD=BD,根據(jù)圓周角定理即可得到結(jié)論;
(2)由已知條件得到∠CBE=45°,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠A=∠BD,根據(jù)相似三角形的性質(zhì)得到DE:AC=BE:BC,即可得到結(jié)論.
(3)連接CO,根據(jù)線段垂直平分線的判定定理得到OE垂直平分BC,由三角形的中位線到現(xiàn)在得到OF= AC,根據(jù)直角三角形的性質(zhì)得到EF=BC,由勾股定理即可得到結(jié)論.
試題解析:(1)連接AD,
∵D為弧AB的中點,
∴AD=BD,
∵AB為直徑,
∴∠ADB=90°,
∴∠DAB=∠DBA=45°
∴∠DCB=∠DAB=45°;
(2)∵BE⊥CD,
又∵∠ECB=45°,
∴∠CBE=45°,
∴CE=BE,
∵四邊形ACDB是圓O的內(nèi)接四邊形,
∴∠A+∠BDC=180°,
又∵∠BDE+∠BDC=180°,
∴∠A=∠BDE,
又∵∠ACB=∠BED=90°,
∴△ABC∽△DBE,
∴DE:AC=BE:BC,
∴DE:BE=AC:BC=1:2,
又∵CE=BE,
∴DE:CE=1:2,
∴D為CE的中點;
(3)連接CO,
∵CO=BO,CE=BE,
∴OE垂直平分BC,
設(shè)OE交BC于F,則F為BC中點,
又∵O為AB中點,
∴OF為△ABC的中位線,
∴OF=AC,
∵∠BEC=90°,EF為中線,
∴EF=BC,
在Rt△ACB中,AC2+BC2=AB2,
∵AC:BC=1:2,AB=,
∴AC=,BC=2,
∴OE=OF+EF=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在邊AB,BC上,AF=DE,AF和DE相交于點G,
(1)觀察圖形,寫出圖中所有與∠AED相等的角.
(2)選擇圖中與∠AED相等的任意一個角,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)決定在八年級陽光體育“大課間”活動中開設(shè)A:實心球,B:立定跳遠,C:跳繩,D:跑步四種活動項目.為了了解學(xué)生對四種項目的喜歡情況,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:
(1)在這項調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)將兩個統(tǒng)計圖補充完整;
(3)若調(diào)查到喜歡“立定跳遠”的5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標系內(nèi),將函數(shù)y=2x2﹣3的圖象向右平移2個單位,再向下平移1個單位得到新圖象的頂點坐標是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三元一次方程組 .
(1)求該方程組的解;
(2)若該方程組的解使ax+2y+z<0成立,求整數(shù)a的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)a,b,若a>b,則下列結(jié)論正確的是( )
A.a﹣2<b﹣2
B.2+a<2+b
C. <
D.﹣2a<﹣2b
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com