【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:
已知:直線l與直線l外一點(diǎn)A。求作:過點(diǎn)A作直線l的平行線。
小明的作法如下:
如圖,
①在直線l上任取兩點(diǎn)B,C;
②以點(diǎn)A為圓心,線段BC的長為半徑作圓;以點(diǎn)C為圓心,線段AB的長為半徑作圓;兩圓。ㄅc點(diǎn)A在l同側(cè))的交點(diǎn)為D;
③過點(diǎn)A,D作直線。所以直線AD即為所求。
老師說:“小明的作法正確!
該作圖的依據(jù)是_____________。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知A(, ),B(2, )為反比例函數(shù)y=圖像上的兩點(diǎn),動(dòng)點(diǎn)P(x,0)在x軸正半軸上運(yùn)動(dòng),當(dāng)線段AP與線段BP之差達(dá)到最大時(shí),點(diǎn)P的坐標(biāo)是( )
A. (,0) B. (1,0) C. (,0) D. (,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過畫出多邊形的對(duì)角線,可以把多邊形內(nèi)角和問題轉(zhuǎn)化為三角形內(nèi)角和問題.如果從某個(gè)多邊形的一個(gè)頂點(diǎn)出發(fā)的對(duì)角線共有2條,那么該多邊形的內(nèi)角和是_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于實(shí)數(shù)a,b,我們定義符號(hào)max{a,b}的意義為:當(dāng)a≥b時(shí),max{a,b}=a;當(dāng)a<b時(shí),max{a,b]=b,如:max{4,﹣2}=4,max{3,3}=3,若關(guān)于x的函數(shù)為y=max{x+3,﹣x+1},則該函數(shù)的最小值是( 。
A.0
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4,E是AB邊的中點(diǎn),F(xiàn)是AC邊的中點(diǎn)。則EF=。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( 。
A. (﹣a2)3=﹣a5 B. a3a5=a15 C. (﹣a2b3)2=a4b6 D. 3a2﹣2a2=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,以線段AB為邊作△ABD,使得AD=BD,連接DC,再以DC為邊作△CDE,使得DC=DE,∠CDE=∠ADB=a。
(1)如圖1,連結(jié)AE,求證:AE=BC;
(2)如圖2,BC=4時(shí),將線段CB沿著射線CE的方向平移,得到線段EF,連接BF,AF。
①若=90°,依題意補(bǔ)全圖2,求線段AF的長;
②請(qǐng)直接寫出線段AF的長(用含的式子表示)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),且與x軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(2,1).
(1)求m及k的值;
(2)求點(diǎn)C的坐標(biāo),并結(jié)合圖象寫出不等式組0<x+m≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列給出的四個(gè)點(diǎn)中,在函數(shù)y=2x﹣3圖象上的是( 。
A. (1,﹣1) B. (0,﹣2) C. (2,﹣1) D. (﹣1,6)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com