【題目】 如圖,正方形ABCD的對(duì)角線AC、BD交于點(diǎn)O,∠ABD的平分線BE交AC于G,交AD于F,且DE⊥BE.
(1)求證:DE=BF;
(2)若BG=,求BF的長.
【答案】(1)見解析;(2)BF=2
【解析】
(1)延長DE和BA交于M,根據(jù)ASA證△MBE≌△DBE,推出DE=DM,根據(jù)ASA證△ABF≌△ADM,推出BF=DM即可;
(2)關(guān)鍵正方形性質(zhì)推出∠ADB=∠ABD,證△ABG和△DBF相似,得出比例式,代入求出即可.
(1)證明:延長DE和BA交于M,
∵DE⊥BE,
∴∠BED=∠BEM=90°,
∵BF平分∠ABD,
∴∠ABE=∠DBE,
在△MBE和△DBE中
∠MEB=∠DEB,BE=BE,∠MBE=∠DBE,
∴△MBE≌△DBE,
∴DE=EM=DM,
∵正方形ABCD,
∴AB=AD,∠MAD=∠BAD=90°,
∵∠EFD=∠AFB,
∴∠MDA=∠ABF,
在△ABF和△ADM中
∠MAD=∠BAF,AB=AD,∠ADM=∠ABF,
∴△ABF≌△ADM,
∴BF=DM,
∴DE=BF.
(2)解:∵正方形ABCD,
∴∠BAC=∠ADB=×90°=45°,
∵∠ABG=∠DBG,
∴△ABG∽△DBF,
∴===,
∴BF=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家飲水機(jī)中原有水的溫度為20℃,通電開機(jī)后,飲水機(jī)自動(dòng)開始加熱(此過程中水溫y(℃)與開機(jī)時(shí)間x(分)滿足一次函數(shù)關(guān)系),當(dāng)加熱到100℃時(shí)自動(dòng)停止加熱,隨后水溫開始下降,此過程中水溫y(℃)與開機(jī)時(shí)間x(分)成反比例關(guān)系,當(dāng)水溫降至20C時(shí),飲水機(jī)又自動(dòng)開始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:
(1)當(dāng)0≤x≤8時(shí),求水溫y(℃)與開機(jī)時(shí)間x(分)的函數(shù)關(guān)系式;
(2)求圖中t的值;
(3)若小明上午八點(diǎn)將飲水機(jī)在通電開機(jī)(此時(shí)飲水機(jī)中原有水的溫度為20℃后即外出散步,預(yù)計(jì)上午八點(diǎn)半散步回到家中,回到家時(shí),他能喝到飲水機(jī)內(nèi)不低于30℃的水嗎?請(qǐng)說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)圖象過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)C在y軸正半軸上,且AB=OC.
(1)求點(diǎn)C的坐標(biāo);
(2)求二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是⊙O上的一個(gè)點(diǎn),⊙P與⊙O的一個(gè)交點(diǎn)是E,⊙O的弦AB(或延長線)與⊙P相切,C是切點(diǎn),AE(或延長線)交⊙P于點(diǎn)F,連接PA、PB,設(shè)⊙O的半徑為R,⊙P的半徑為r(R>r),
(1)如圖1,求證:PAPB=2rR;
(2)如圖2,當(dāng)切點(diǎn)C在⊙O的外部時(shí),(1)中的結(jié)論是否成立,試證明之;
(3)探究(圖2)已知PA=10,PB=4,R=2r,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在全運(yùn)會(huì)射擊比賽的選拔賽中,運(yùn)動(dòng)員甲10次射擊成績的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖如下:
命中環(huán)數(shù) | 10 | 9 | 8 | 7 |
命中次數(shù) | 3 | 2 |
(1)根據(jù)統(tǒng)計(jì)表(圖)中提供的信息,補(bǔ)全統(tǒng)計(jì)表及扇形統(tǒng)計(jì)圖;
(2)已知乙運(yùn)動(dòng)員10次射擊的平均成績?yōu)?/span>9環(huán),方差為1.2,如果只能選一人參加比賽,你認(rèn)為應(yīng)該派誰去?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1、x2是一元二次方程2x2-2x+m+1=0的兩個(gè)實(shí)根.
(1)求實(shí)數(shù)m的取值范圍;
(2)如果m滿足不等式7+4x1x2>x12+x22,且m為整數(shù).求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是BC邊上的一點(diǎn),BE=4,EC=8,將正方形邊AB沿AE折疊到AF,延長EF交DC于G,連接AG,FC,現(xiàn)在有如下4個(gè)結(jié)論:①∠EAG=45°;②FG=FC;③FC∥AG;④S△GFC=14.其中正確結(jié)論的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長:中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機(jī)抽取了其中200名學(xué)生的成績(成績x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
成績x/分 | 頻數(shù) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 20 | 0.10 |
70≤x<80 | 30 | b |
80≤x<90 | a | 0.30 |
90≤x≤100 | 80 | 0.40 |
請(qǐng)根據(jù)所給信息,解答下列問題:
(1)a=______,b=______;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)這次比賽成績的中位數(shù)會(huì)落在_____________分?jǐn)?shù)段;
(4)若成績?cè)?/span>90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學(xué)生中成績“優(yōu)”等約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水是人類的生命之源,為了鼓勵(lì)居民節(jié)約用水,相關(guān)部門實(shí)行居民生活用水階梯式計(jì)量水價(jià)政策,下表是昆明市居民“一表一戶”生活用水階梯式計(jì)費(fèi)價(jià)格表的部分信息,請(qǐng)解答:
自來水銷售價(jià)格 | |
每戶每月用水量 | 單位:元/噸 |
15噸及以下 | a |
超過15噸但不超過25噸的部分 | b |
超過25噸的部分 | 5 |
(1)小王家今年3月份用水22噸,要交水費(fèi) 元(用含a,b的代數(shù)式表示);
(2)小王家今年4月份用水21噸,交水費(fèi)48元;鄰居小李家4月份用水27噸,交水費(fèi)70元,求a,b的值;
(3)如果小王家5月份用水水費(fèi)計(jì)劃不超過67元,則小王家5月份最多可用水多少噸?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com