【題目】在平面直角坐標(biāo)系xOy中,直線y=2x+1與雙曲線y= 的一個(gè)交點(diǎn)為A(m,﹣3).
(1)求雙曲線的表達(dá)式;
(2)過動(dòng)點(diǎn)P(n,0)(n<0)且垂直于x軸的直線與直線y=2x+1和雙曲線y= 的交點(diǎn)分別為B,C,當(dāng)點(diǎn)B位于點(diǎn)C上方時(shí),直接寫出n的取值范圍.
【答案】
(1)解:當(dāng)y=2x+1=﹣3時(shí),x=﹣2,
∴點(diǎn)A的坐標(biāo)為(﹣2,﹣3),
將點(diǎn)A(﹣2,﹣3)代入y= 中,
﹣3= ,解得:k=6,
∴雙曲線的表達(dá)式為y= .
(2)解:依照題意,畫出圖形,如圖所示.
觀察函數(shù)圖象,可知:當(dāng)﹣2<x<0時(shí),直線y=2x+1在雙曲線y= 的上方,
∴當(dāng)點(diǎn)B位于點(diǎn)C上方時(shí),n的取值范圍為﹣2<x<0.
【解析】(1)根據(jù)點(diǎn)A的縱坐標(biāo)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,可求出點(diǎn)A的坐標(biāo),根據(jù)點(diǎn)A的坐標(biāo)利用待定系數(shù)法,即可求出雙曲線的表達(dá)式;(2)依照題意畫出函數(shù)圖象,根據(jù)兩函數(shù)圖象的上下位置關(guān)系,即可找出n的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在矩形內(nèi)點(diǎn)F處,連接CF,則CF的長為( )
A.1.8
B.2.4
C.3.2
D.3.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,點(diǎn)E在AD邊上,連接BE、CE,EB平分∠AEC
(1)如圖1,判斷△BCE的形狀,并說明理由;
(2)如圖2,若∠A=90°,BC=5,AE=1,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=6,AC=BC=5,將△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α(0°<α<180°),點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)C的對應(yīng)點(diǎn)為點(diǎn)E,連接BD,BE.
(1)如圖,當(dāng)α=60°時(shí),延長BE交AD于點(diǎn)F.
①求證:△ABD是等邊三角形;
②求證:BF⊥AD,AF=DF;
③請直接寫出BE的長;
(2)在旋轉(zhuǎn)過程中,過點(diǎn)D作DG垂直于直線AB,垂足為點(diǎn)G,連接CE,當(dāng)∠DAG=∠ACB,且線段DG與線段AE無公共點(diǎn)時(shí),請直接寫出BE+CE的值.
溫馨提示:考生可以根據(jù)題意,在備用圖中補(bǔ)充圖形,以便作答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)(2,-1),與軸交于點(diǎn)A,F點(diǎn)為(1,2).
(Ⅰ)求的值及A點(diǎn)的坐標(biāo);
(Ⅱ)將函數(shù)的圖象沿軸方向向上平移得到函數(shù),其圖象與軸交于點(diǎn)Q,且OQ=QF,求平移后的函數(shù)的解析式;
(Ⅲ)若點(diǎn)A關(guān)于的對稱點(diǎn)為K,請求出直線FK與軸的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=BC,∠ABC=90°.以AB為斜邊作等腰直角三角形ADB.點(diǎn)P是直線DB上一個(gè)動(dòng)點(diǎn),連接AP,作PE⊥AP交BC所在的直線于點(diǎn)E.
(1)如圖1,點(diǎn)P在BD的延長線上,PE⊥EC,AD=1,直接寫出PE的長;
(2)點(diǎn)P在線段BD上(不與B,D重合),依題意,將圖2補(bǔ)全,求證:PA=PE;
(3)點(diǎn)P在DB的延長線上,依題意,將圖3補(bǔ)全,并判斷PA=PE是否仍然成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△BCE中,點(diǎn)A是邊BE上一點(diǎn),以AB為直徑的⊙O與CE相切于點(diǎn)D,AD∥OC,點(diǎn)F為OC與⊙O的交點(diǎn),連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么一次函數(shù)y=ax+b的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com