【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+x﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線l經(jīng)過A,C兩點(diǎn),連接BC.
(1)求直線l的解析式;
(2)若直線x=m(m<0)與該拋物線在第三象限內(nèi)交于點(diǎn)E,與直線l交于點(diǎn)D,連接OD.當(dāng)OD⊥AC時(shí),求線段DE的長;
(3)取點(diǎn)G(0,﹣1),連接AG,在第一象限內(nèi)的拋物線上,是否存在點(diǎn)P,使∠BAP=∠BCO﹣∠BAG?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)y=;(2)DE=;(3)存在點(diǎn)P(,),使∠BAP=∠BCO﹣∠BAG,理由見解析.
【解析】
(1)根據(jù)題目中的函數(shù)解析式可以求得點(diǎn)A和點(diǎn)C的坐標(biāo),從而可以求得直線l的函數(shù)解析式;
(2)根據(jù)題意作出合適的輔助線,利用三角形相似和勾股定理可以解答本題;
(3)根據(jù)題意畫出相應(yīng)的圖形,然后根據(jù)銳角三角函數(shù)可以求得∠OAC=∠OCB,然后根據(jù)題目中的條件和圖形,利用銳角三角函數(shù)和勾股定理即可解答本題.
(1)∵拋物線y=x2+x-2,
∴當(dāng)y=0時(shí),得x1=1,x2=-4,當(dāng)x=0時(shí),y=-2,
∵拋物線y=x2+x-2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,
∴點(diǎn)A的坐標(biāo)為(-4,0),點(diǎn)B(1,0),點(diǎn)C(0,-2),
∵直線l經(jīng)過A,C兩點(diǎn),設(shè)直線l的函數(shù)解析式為y=kx+b,
,得,
即直線l的函數(shù)解析式為y=x2;
(2)直線ED與x軸交于點(diǎn)F,如圖1所示,
由(1)可得,
AO=4,OC=2,∠AOC=90°,
∴AC=2,
∴OD=,
∵OD⊥AC,OA⊥OC,∠OAD=∠CAO,
∴△AOD∽△ACO,
∴,
即,得AD=,
∵EF⊥x軸,∠ADC=90°,
∴EF∥OC,
∴△ADF∽△ACO,
∴,
解得,AF=,DF=,
∴OF=4-=,
∴m=-,
當(dāng)m=-時(shí),y=×()2+×(-)-2=-,
∴EF=,
∴DE=EF-FD==;
(3)存在點(diǎn)P,使∠BAP=∠BCO-∠BAG,
理由:作GM⊥AC于點(diǎn)M,作PN⊥x軸于點(diǎn)N,如圖2所示,
∵點(diǎn)A(-4,0),點(diǎn)B(1,0),點(diǎn)C(0,-2),
∴OA=4,OB=1,OC=2,
∴tan∠OAC=,tan∠OCB=,AC=2,
∴∠OAC=∠OCB,
∵∠BAP=∠BCO-∠BAG,∠GAM=∠OAC-∠BAG,
∴∠BAP=∠GAM,
∵點(diǎn)G(0,-1),AC=2,OA=4,
∴OG=1,GC=1,
∴AG=,,即,
解得,GM=,
∴AM==,
∴tan∠GAM=,
∴tan∠PAN=,
設(shè)點(diǎn)P的坐標(biāo)為(n,n2+n-2),
∴AN=4+n,PN=n2+n-2,
∴,
解得,n1=,n2=-4(舍去),
當(dāng)n=時(shí),n2+n-2=,
∴點(diǎn)P的坐標(biāo)為(,),
即存在點(diǎn)P(,),使∠BAP=∠BCO-∠BAG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】最近,“校園安全”受到全社會(huì)的廣泛關(guān)注,巫溪中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度, 采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)扇形統(tǒng)計(jì)圖中“基本了解”部分對(duì)應(yīng)扇形的圓心角為 度;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若達(dá)到“了解”程度的人中有1名男生,2名女生,達(dá)到“不了解”程度的人中有1名男生和1名女生,若分別從達(dá)到“了解”程度和“不了解”程度的人中分別抽取1人參加校園知識(shí)競賽,請(qǐng)用樹狀圖或列表法求出恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線y=﹣x+m與反比例函數(shù)y=的圖象在第一象限內(nèi)交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),分別與x、y軸交于點(diǎn)C、D,AE⊥x軸于E.
(1)若OECE=12,求k的值.
(2)如圖2,作BF⊥y軸于F,求證:EF∥CD.
(3)在(1)(2)的條件下,EF=, AB=2,P是x軸正半軸上的一點(diǎn),且△PAB是以P為直角頂點(diǎn)的等腰直角三角形,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=90°,AD∥BC,BE⊥CD于E交AD的延長線于F,DC=2AD,AB=BE.
(1)求證:AD=DE.
(2)求證:四邊形BCFD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=90°,AB=AD,連接BD,點(diǎn)E在AB上,且∠BDE=15°,DE=4,DC=2.
(1)求BE的長;
(2)求四邊形DEBC的面積.
(注意:本題中的計(jì)算過程和結(jié)果均保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中裝有除顏色外其余均相同的5個(gè)小球,其中紅球3個(gè),黑球2個(gè).
(1)若先從袋中取出x(x>0)個(gè)紅球,再從袋子中隨機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,若A為必然事件,則x的值為 ;
(2)若從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè),用畫樹狀圖或列表法求這個(gè)事件的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=120°,將菱形折疊,使點(diǎn)A恰好落在對(duì)角線BD上的點(diǎn)G處(不與B、D重合),折痕為EF,若DG=2,BG=6,則BE的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)完二次函數(shù)的圖像及其性質(zhì)后,老師讓學(xué)生們說出的圖像的一些性質(zhì),小亮說:“此函數(shù)圖像開口向上,且對(duì)稱軸是”;小麗說:“此函數(shù)肯定與x軸有兩個(gè)交點(diǎn)”;小紅說:“此函數(shù)與y軸的交點(diǎn)坐標(biāo)為(0,-3)”;小強(qiáng)說:“此函數(shù)有最小值, ”……請(qǐng)問這四位同學(xué)誰說的結(jié)論是錯(cuò)誤的( )
A. 小亮 B. 小麗 C. 小紅 D. 小強(qiáng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+2x﹣1.
(1)寫出它的頂點(diǎn)坐標(biāo);
(2)當(dāng)x取何值時(shí),y隨x的增大而增大;
(3)當(dāng)x取何值時(shí)y的值大于0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com