【題目】如圖,平行四邊形ABCD中,點E,F(xiàn)分別在BC,AD上,且BE:EC=2:1,EF∥CD,交對角線AC于點G,則_____________。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點O,AE⊥BD于點E,CF⊥BD于點F,連接AF,CE,若DE=BF,則下列結論:①CF=AE;②OE=OF;③四邊形ABCD是平行四邊形;④圖中共有四對全等三角形.其中正確結論的個數(shù)是
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某天一個巡警騎摩托車在一條南北大道上巡邏,他從崗亭出發(fā),規(guī)定崗亭為原點,向北為正,這段時間行駛記錄如下(單位:千米) +10,-9,+7,-15,+6,-14,+4,-2
(1)最后停留的地方在崗亭的哪個方向?距離崗亭多遠?
(2)若摩托車行駛,每千米耗油0.06升,每升6.2元,且最后返回崗亭,這一天耗油共需多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年3月,某市教育主管部門在初中生中開展了“文明禮儀知識競賽”活動,活動結束后,隨機抽取了部分同學的成績(x均為整數(shù),總分100分),繪制了如下尚不完整的統(tǒng)計圖表。
根據(jù)以上信息解答下列問題
(1)統(tǒng)計表中,a= ,b= ,c= 。
(2)扇形統(tǒng)計圖中,m的值為 。“C”所對應的圓心角的度數(shù)是 ;
(3)若參加本次競賽的同學共有5000人,請你估計成績在95分及以上的學生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC和△ADE均為等腰直角三角形,∠BAC=∠DAE=90°,點D是等腰直角三角形ABC斜邊BC所在直線上一點(不與點B重合).
(1)如圖1,當點D在線段BC上時,線段CE、BD之間的位置關系是__________,數(shù)量關系是___________;
(2)如圖2,當點D在線段BC的延長線上時,探索AD、BD、CD三條線段之間的數(shù)量關系,寫出結論并證明;
(3)若BD=CD,直接寫出∠BAD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在△ABC與△ADE中,AB=AC,AD=AE,∠A是公共角。
(1)BD與CE的數(shù)量關系是:BD______CE;
(2)把圖①△ABC繞點A旋轉一定的角度,得到如圖②所示的圖形。
①求證:BD=CE;
②BD與CE所在直線的夾角與∠DAE的數(shù)量關系是什么?說明理由。
(3)若AD=10,AB=6,把圖①中的△ABC繞點A順時針旋轉α度(0°<α≤360)直接寫出BD長度的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀第①小題的計算方法,再計算第②小題.
①–5+(–9)+17+(–3)
解:原式=[(–5)+(–)]+[(–9)+(–)]+(17+)+[(–3+(–)]
=[(–5)+(–9)+(–3)+17]+[(–)+(–)+(–)+]
=0+(–1)
=–1.
上述這種方法叫做拆項法.靈活運用加法的交換律、結合律可使運算簡便.
②仿照上面的方法計算:(﹣2000)+(﹣1999)+4000+(﹣1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com